CURRENT PERSPECTIVE OF NATURAL ORIFICE TRANS-LUMINAL ENDOSCOPIC SURGERY

Essay

Submitted for partial fulfillment of Master Degree in **General Surgery**

By

Mohamed Fawzy Attia

M.B., B.Ch. (Cairo University)

Under Supervision of

Prof. Dr./ Abdel Ghany Mahmoud El-Shamy

Professor of General Surgery
Faculty of Medicine, Ain Shams University

Dr./ Mohamed Saad El-Naggar

Lecturer of General Surgery
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2013

List of Content

	Page
Introduction to Notes	1 -4
Definition of Notes	5-7
History of Endoscopy	8-14
Patient selection criteria for NOTES	15-16
Orifices of Entrance in NOTES	17-35
Notes Instruments Used In Closure of Visceral Access Incisions.	36-47
Human NOTES Procedures Described to Date	48-68
Current technologic developments	69-91
Advantages versus Disadvantages	92-97
Summary	98-99
References	100-126
Arabic summary	

List of figure

No.	Title	Page
1	Merging of surgery and therapeutic endoscopy	11
2	Balloon dilatation of the gastrotomy in the animal model	19
3	Sagital view of the female pelvis showing the shape and location of the vaginal fundus that delineate the floor of the Douglas pouch	20
4	Draft of the deep pelvis and the Douglas pouch showing the free zone for transvaginal access to the peritoneal cavity	22
5	Transanal exteriorization of the rectosigmoid colon mobilized using transanal endoscopic microsurgery (TEM)	
6	Endoscopic view showing access to the mediastinum following a full thickness incision with a needle knife alone	32
7	Transesophageal mediastinoscopy technique. A: Saline solution-injection test to confirm needle-tip entry into the submucosa;	33
8	This figure outlines the process of transesophageal entry into the mediastinum and shows representative flexible endoscopic views	34
9	QuickClip2 (Olympus Corp., Melville, NY)	
10	TriClip TriClip (Cook Medical Inc., Winston-Salem, NC)	37
11	Resolution Clip (Boston Scientific, Natick, MA)	37
12	InScope Multiclip Applier (Ethicon Endosurgical Inc., Cincinnati, OH)	38
13	Over-the-scope clip (Ovesco Endoscopy, Tuebingen, Germany) (OTSC)	38
14	The Eagle claw	40
15	Diagram of the T-tags appliance and locking in the bladder wall.	41
16	Primary anchor designs. A, T-Bar anchors. B, Star anchors. C, Basket anchors	42
17	Star anchors holding fresh placation	42
18	Firing of the G-Prox needle (USGI, San Capistrano, CA, USA) across the grasped edges of a gastrotomy.	43
19	View of the suturing procedure using extracted stomachs	44

List of figure

No.	Title	Page
20	The NDO Plicator. (A) Overview of the entire device	45
21	The NDO Plicator implant. (A) As the jaws of the device close, the expanded polytetrafluoroethylene	
22	SurgASSIST. The arms of the stapler are closed around the gastric walk incision	
23	Transgastric cholecystectomy. Both the cystic duct and artery were identified,	
24	Transgastric cholecystectomy. The gallbladder was dissected from its bed by using two endoscopic instruments	
25	Endoscopic closure of the perforated gastric wall. The gastric wall incision was closed with endoscopic clips	52
26	Preoperative esophagogastroduodenoscopy (EGD) showing a submucosal tumor (SMT)	53
27	Lesser sac opening using an insulation-tipped diathermy knife (IT knife) through the transvaginal endoscope	
28	Transvaginal gastric stapling with a computer-assisted linear stapler	
29	Extended retroperitoneal cavities.	
30	Peroral transgastric endoscopic peritoneoscopy of a patient with pancreatic cancer	
31	TIF procedure	64
32	Endoscopic images of gastroesophageal valves	66
33	StomaphyX device end lumen with suction opening	
34	StomaphyXTM mechanism of tissue approximation	68
35	The Transport advanced operating endoscope	
36	The Cobra triangulating scope	76
37	Natural orifice translumenal surgery (NOTES)/R scope user interface	77

List of figure

No.	Title	Page
38	NOTES/R scope distal tip arrangement	77
39	Incisionless operating platform	
40	EndoSAMURAI end effectors	
41	EndoSAMURAI user interface	81
42	Direct drive endoscopic system (DDES)	
43	DDES-distal end	
44	Mobile in vivo imaging robot	
45	In vivo biopsy robot with biopsy grasper	
46	Natural orifice surgery using a miniature in vivo robot platform	
47	Natural orifice translumenal endoscopic surgery (NOTES)	
48	Surgeon console used for control of the natural orifice translumenal endoscopic surgery (NOTES) robot	90

List of Table

No.	Title	Page
1	Highlights in the development of modern endoscopy 1960–2010.	14

List of abbreviations

Abbreviation	Meaning
ASGE	The American society for
	gastrointestinal endoscopy
CT	Computed tomography
DCE	Dual channel scope
DDES	Direct drive endoscopic system
EGJ	Esophagogastric junction
EMR	Endoscopic mucosal resection
ERCP	Endoscopic retrograde
	cholangiopancreaticography
ESD	Early stage disease
EURO-NOTES	European association of
	translumenal surgery
EUS	Endoscopic ultrasonography
GE	Gastroesophageal
GERD	Gastroesophageal reflux disease
HoLEP	Holmium laser enucleation of the
	prostate
ICU	Intensive care unit
IOP	Incisionless operating platform
IRB	Institutional Review Board
IT	Insulation tripped electrosurgical
	knife
LED	Light emitting diodes
LES	Lower esophageal sphincter
LS	Laparoscopic surgery
MAS	Minimal access surgery
MIS	Minimally invasive surgery
MRI	Magnetic resonance imaging

	<u> </u>
NOSCAR	Natural orifice surgery consortium
	for assessment and research
NOTES	Natural orifice transluminal
	endoscopic surgery
OTSC	Over the scope clip
PCEEA	Premier curved end to end
	anastomosis circular stapler
PDT	Photodynamic therapy
PEG	Percutaneous endoscopic surgery
RPS	Retroperitoneal surgery
RYGBP	Roux en Y gastric bypass
SAGES	Society of American gastrointestinal
	endoscopic surgeons
SN	Sentinel LN
SSI	Surgical site infection
TEM	Transanal endoscopic microsurgery
TEP	Totally extraperitoneal hernioplasty
TIF	Transoral incisionless
	fundoplication
TNM	Tumor nodal metastasis
VBG	Vertical banded gastroplasty
YAG	yttrium-aluminum-garnet laser

Acknowledgements

I would like to acknowledge my deepest gratitude and respects to *Professor Dr. Aldel Ghany Mahmoud El-Shamy*, Professor of General Surgery, Ain Shams University for his continues guidance and support all through my career.

I would also like to express my deepest gratitude to Dr. Mohamed Sand El-Naggar, Lecturer of General Surgery; Ain Shams University for his major efforts in this work and his great compliance.

Mohamed Fawzy Attia

Introduction to Notes

Change is part of surgery but it is never easy to accept. At the dawn of surgery, excellence was associated with big incisions: "Big scar, big surgeon." Surgery with no scars was an impossible reverie. Now natural orifice transluminal endoscopic surgery (NOTES) is being performed, and the philosophy of surgery will be dramatically changed. Transluminal surgery has the potential to break the physical barrier between body trauma and surgery, representing an epical evolution in surgery. Laparoscopic gallbladder resection changed the focus of surgery and the mindset of nearly all surgeons. Cholecystectomy seems to be the logical next step in developing the clinical application of NOTES (*Marescaux et al.*, 2007).

In 1882, Langenbuch, as cited by *van Gulik*, *1986*, successfully removed the gallbladder in a 43-year-old man who had cholelithiasis. His initial report was ignored. Nevertheless, Langenbuch's open cholecystectomy remained the standard criterion for the treatment of symptomatic cholelithiasis for More than a century. In1985, Muhe, as cited by *Reynolds*, *2001*, performed the first laparoscopic cholecystectomy using a modified laparoscope, called the galloscope. In 1986, he presented his technique at the German Surgical Society Congress but was strongly criticized. In 1987, Mouret performed the first laparoscopic cholecystectomy with an

1

approach that would become the standard technique within 2 years which was the use of one optical trocar and two other trocars. The world of general surgery was soon divided into a small group of enthusiastic surgeons convinced of the superiority of laparoscopic over conventional cholecystectomy and a second, large group of surgeons with varying opinions ranging from curiosity to frank condemnation of laparoscopic cholecystectomy (*Mouret*, 1996).

The controversy was intense but short. In 1992, the National Institutes of Health Consensus Development Conference gallstones laparoscopic statement and on cholecystectomy concluded that, compared with open cholecystectomy, laparoscopic cholecystectomy was safe and effective in most patients and should be the treatment of choice (NIHCDC, 1992).

Even if surgeons were reluctant to acknowledge this shift in treatment, patients applauded the new minimally invasive surgery. Whenever it was possible, patients would ask for a surgical procedure that left no outer scarring and resulted in no postoperative pain. Patients, both male and female, independent of age and body shape, dislike scars, not only for cosmetic reasons but because scars indicate they have undergone treatment because of illness (*NIHCDC*, *1992*).

This resulted in NOTES, with its general goal of minimizing the trauma of any interventional process by eliminating the incision through the abdominal wall and using natural orifices (*NIHCDC*, 1992).

In 2004, Kalloo and his coworkers reported on a series of transgastric peritoneoscopies done in a porcine model-a procedure to be later termed natural orifice translumenal endoscopic surgery (NOTES) (*Kalloo et al., 2004*). That same year Reddy and Rao presented a video of the first human transgastric appendectomy at the Annual Conference of the Society of Gastrointestinal Endoscopy of India (*Reddy and Rao, 2004*).

As with the laparoscopy revolution, the introduction of NOTES caused a stir among general surgeons and many scrambled to learn more in anticipation of the next possible wave of minimally invasive surgery. Interestingly, a subgroup of advanced therapeutic gastroenterologists was also intrigued by this new field and equally interested in learning more. By 2005 the first NOTES hands-on training course was conducted at Case Western Reserve School of Medicine in Cleveland, Ohio despite the fact that only one human case had been done in the world! Multiple courses followed both in the US and Europe (*Dunkin*, 2010).

NOTES training is unique in that it crosses specialty lines (general and thoracic surgery, gynecology, gastroenterology) and most practitioners do not possess both the knowledge and skill to perform the procedures in their current form. The flexible endoscopy instruments used in NOTES are not familiar to most surgeons while surgical technique and procedures are not familiar to most gastroenterologists (*Dunkin*, 2010).

Adding unique points of access such as transvaginal, transcolonic or transesophageal further add to the learning curve and the whole process becomes even more complex because the field is in constant evolution with advances in technology and technique being introduced almost daily! (*Dunkin*, 2010).

DEFINITION OF NOTES

orifice transluminal **Natural** endoscopic surgery (NOTES) (Halim and Tavakkolizadeh, **2008**) is an experimental surgical technique whereby "scarless" abdominal operations can be performed with an endoscope passed through a natural orifice (mouth, urethra, anus, etc.) then through an internal incision in the stomach, vagina, bladder (*Lima et al.*, **2006**) or colon, thus avoiding any external incisions or scars (Baron, 2007).

This technique has been used for diagnostic and therapeutic procedures in animal models, including transgastric (through the stomach) organ removal. Most recently, the transvesical and the transcolonic approaches have been advocated by some researchers as being more suited to access upper abdominal structures that are often more difficult to work with using a transgastric approach(*Fong et al.*, 2007). In this sequence, a group from Portugal (*ICVS*,) used transgastric and transvesical combined approach to increase the feasibility of moderately complex procedures such as cholecystectomy (*Rolanda et al.*, 2007).

NOTES was originally described in animals by researchers at Johns Hopkins University (*Anthony Kalloo et al.*), and was recently used for transgastric appendectomy in humans in India (*by Drs. G.V. Rao and N. Reddy*). On June 25, 2007 Swanstrom and colleagues reported the first human transgastric cholecystectomy (*NOTES Transgastric*

Cholecystectomy). Totally transvaginal cholecystectomy has been described in experimental model without using laparoscopic assistance (*Sánchez-Margallo et al.*, 2008).

In late 2008 surgeons from Johns Hopkins School of Medicine removed a healthy kidney from a woman donor using NOTES. The surgery was called transvaginal donor kidney extraction (*InfoNIAC*, 2009). The transvaginal access to NOTES seems to be the most safe and feasible for clinical application. In early March 2007, the NOTES Research Group in Rio de Janeiro, Brazil, led by Dr. Ricardo Zorron, performed the first series of transvaginal NOTES cholecystectomy in four patients, based in previous experimental studies. With fewer potential complications, the procedure has a disadvantage of being possible only in women (*Sánchez-Margallo et al.*, 2009).

Proponents and researchers in this field recognize the potential of this technique to revolutionize the field of minimally invasive surgery by eliminating abdominal incisions. NOTES could be the next major paradigm shift in surgery, just as laparoscopy was the major paradigm shift during the 1980s and 1990s. Potential advantages include lower anesthesia requirements; faster recovery and shorter hospital stays; avoidance of the potential complications of transabdominal wound infections (e.g. hernias); less immunosuppression; better postoperative pulmonary and diaphragmantic function; and the potential for "scarless" abdominal surgery. Critics challenge the safety and advantages of this technique in the face of effective