Incidence and Predictors of Contrast Induced Nephropathy after Percutaneous Coronary Intervention for Chronic Total Occlusion

Thesis
Submitted for Partial Fulfillment of the Master
Degree
In Cardio Vascular Medicine

By Mohamed Fahmy Mohamed Labib (M.B., B.Ch.)

Under supervision of

Prof. Mohamed Ayman Saleh

Professor of Cardio Vascular Medicine Faculty of Medicine Ain Shams University

Dr. Ashraf Elsherbiny Abdelhady

Assistant Professor of Internal Medicine National Research Centre

Dr. Ayman Mortada Abdelmoteleb

Lecturer of Cardio Vascular Medicine Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2013

سورة البقرة الآية: ٣٢

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Mohamed Ayman Saleh, Professor of Cardio Vascular Medicine for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Dr. Ashraf Elsherbiny Abdelhady, Assistant Professor of Internal Medicine for his sincere efforts and fruitful encouragement.

I am deeply thankful to Dr. Ayman Mortada Abdelmoteleb, Lecturer of Cardio Vascular Medicine for his great help, outstanding support, active participation and guidance.

Mohamed Fahmy

List of Contents

Title	Page No.
Introduction	1
Aim of the work	3
Review of Literature	
i - Contrast induced nephropathy	4
ii - Prevention of CIN	29
iii - Chronic total occlusion	43
Patients and methods	61
Results	67
Discussion	90
Summary	97
Conclusion	99
Recommendations	100
References	101
Appendix	120
Arabic summary	

List of Tables

Table No.	Title	Page No.
Table 1: Risk factors for t	the development of CIN.	13
Table 2: Recommended E	SC guidelines for prevent	tion of CIN39
Table 3: Distribution of ag	ge and gender among the	study population68
Table 4: Distribution of ag	ge and gender in both grou	ups69
Table 5: Distribution of ris	sk factors among the stud	ly population72
	among the study pop	
Table 7: Distribution of pr	rocedural data among the	study population76
Table 8: Distribution as among the study	•	mount of contrast77
Table 9: Distribution as among the study		ur creatinine level79
Table 10: Distribution as both groups		creatinine level in79
Table 11: Incidence of CI	N.5 and CIN 25% among	study cases80
	ependant factor and a se	
Table 13: Distribution of o	creatinine clearance in stu	idy population82
Table 14: Comparison be creatinine cleara		p B CIN 25% and hours84
Table 15: Relation betwee factors for CIN.		t baseline and risk86
Table 16: Relation between factors for CIN.		t baseline and risk87
Table 17: Comparison b Mehran score		roup B regarding

List of Figures

Fig. No.	Title	Page No.
-	ows proposed pathophysiced nephropathy	iologic mechanisms of9
Figure 2: Scheme to de	efine CIN risk score	15
	ple ways of calculatineduce CIN	g maximum contrast23
Figure 4: Histology of	CTO	48
	management algorithm ronic total occlusion (CT	on for a patient with O)
Figure 6: Distribution	of age in both groups	69
Figure 7: Distribution	of gender in both groups	70
Figure 8: Distribution	of risk factors in both gro	oups72
•	on of fluro time and tudy population	amount of contrast
Figure 10: Distribution	of basal and 48 hour cre	eatinine level
Figure 11: Incidence o	f CIN.5 and CIN 25% an	mong study cases80
Figure 12: Distribution	n of creatinine clearance i	in study population 83
	on between group A, gr baseline and at 48 hours	coup B and creatinine 84
creatinine c	operating characterist clearance at baseline in	. ,
	on between group A and	d group B regarding

List of Abbreviations

Abb. Full term

ACC	: American College of Cardiology
AHA	: American Heart Association
AUC	: Area under the curve
CABG	: Coronary artery bypass grafting
CHF	: Congestive heart failure
CIN	: Contrast induced nephropathy
CKD	: Chronic kidney disease
CM	: Contrast media
СТО	: Chronic total occlusion
CTOs	: Coronary chronic total occlusions
EACTS	: European Association for Cardio Thoracic Surgery
eGFR	: Estimated glomerular filtration rate
ESC	: European Society of Cardiology
ESUR	: European Society of Urogenital Radiology
GFR	: Glomerular filtration rate
HOCM	: High osmolar contrast media
HS	: Highly significant
IOCM	: Iso-osmolar contrast media
LDL-c	: Low density lipoprotein–cholesterol
LOCM	: Low osmolar contrast media
LV	: Left ventricular
MDRD	: Modification of Diet in Renal Disease
MI	: Myocardial infarction
NAC	: N-Acetylcysteine
NS	: Non significant
NSAIDs	: Non-steroidal anti-inflammatory drugs
NYHA	: New York Heart Association classification
PCI	: Percutaneous coronary intervention
ROC	: Receiver operating characteristic curve
S	: Significant
SCr	: Serum creatinine
SPSS	: Statistical package for Social Science
TIMI	: Thrombolysis in myocardial infarction

INTRODUCTION

There have been numerous technical and pharmacological advances in the field of percutaneous coronary intervention (PCI) since its introduction many years ago (*Stone et al.*, 2005).

PCI for chronic total occlusions (CTO) remains a challenge for the interventional cardiologist because of lower procedural success rates compared to PCI for non-occlusive lesions (*Di Mario et al.*, 2007).

CTO is defined according to thrombolysis in myocardial infarction (TIMI) score as (grade0-1) flow with a duration>3 months, documented angiographically (*Barlis et al.*, 2008).

Iodinated contrast media are being used increasingly in the catheterization laboratory during diagnostic catheterization and PCI, Contrast induced nephropathy (CIN) is a major cause of morbidity and mortality associated with PCI (*Rihal et al.*, 2002).

CIN was defined as increase in the baseline creatinine levels ≥ 0.5 mg/dl (≥ 44.2 µmol/l) or $\geq 25\%$ in the 48 hr following the procedure (*Dangas et al.*, 2005).

Known predictors of CIN include age, anemia, diabetes mellitus, severe heart failure or hypotension, previous chronic

renal failure and large volumes of contrast (Mehran et al., 2004).

Certain procedural variables can also increase the risk of CIN in patients undergoing coronary angiography with or without PCI these include use of an intra-aortic balloon pump, contrast media dose and the type of contrast medium used (Aspelin et al., 2003).

AIM OF THE WORK

To assess the incidence and predictors of contrast induced nephropathy (CIN) after percutaneous coronary intervention (PCI) for chronic total occlusion (CTO).

I - CONTRAST INDUCED NEPHROPATHY

adiologic procedures utilizing intravascular iodinated contrast media (CM) injections are being widely applied for both diagnostic and therapeutic purposes (*Gruberg et al.*, 2000).

This results in the rising incidence of iatrogenic renal function impairment caused by the exposure to CM, a condition known as contrast induced nephropathy (CIN) (*Nash et al.*, 2002).

This iatrogenic complication has been a subject of concern to cardiologists in recent years because of its adverse effect on prognosis and addition to health care costs. At the same time, many hospitalized patients have compromised renal function (*Chew et al.*, 2006).

O Definition:

CIN is implied when there is a temporal link between deterioration of renal function and the administration of I.V. contrast, in the absence of any other etiology (*Barrett et al.*, 2006).

While there is no universally accepted definition of CIN, it is usually recognized by an acute deterioration in renal function 2 to 7 days following contrast administration, which

occurs in the absence of other identifiable causes of acute renal failure (*Gleeson et al.*, 2004).

CIN is typically defined in the recent literature as an increase in serum creatinine (SCr) occurring within the first 24 h after contrast exposure and peaking up to 5 days afterwards. In most instances, the rise in SCr is expressed either in absolute terms (0.5 to 1.0 mg/dl) or as a proportional rise in SCr of 25% or 50% above the baseline value (*McCullough et al.*, 2008).

The most commonly used definition in clinical trials is a rise in SCr of 0.5 mg/dl or a 25% increase from the baseline value, assessed at 48 h after the procedure (*McCullough et al.*, 2008).

The European Society of Urogenital Radiology (ESUR) defines CIN as impairment in renal function (an increase in serum creatinine by more than 25% or 44.2 μ mol/l [0.5 mg/dl]) within 3 days after intravascular administration of contrast medium, without an alternative etiology (*Thomsen et al.*, 2003).

The Acute Kidney Injury Network definition is a rise in SCr >0.3 mg/dl with oliguria, which is compatible with previous definitions (*Thomsen et al.*, 2003).

Typically, CIN onset occurs within 24–48 hours of exposure, SCr levels peak in 3–5 days, and renal function returns to baseline in 7–21 days (*Solomon et al.*, 1998).

If renal function does not return to baseline, other possible causes of renal injury like atheroembolism should be suspected (*Solomon et al.*, 1998).

It is important to note that these are relatively nonspecific definitions, and there are no biomarkers that differentiate CIN from other potential causes of acute renal failure, such as atheroembolic disease arising from vascular manipulation (*Gleeson et al.*, 2004).

• Epidemiology:

Radiographic CM are responsible for 11% of cases of hospital-acquired renal insufficiency, the third most common cause of renal failure after impaired renal perfusion and the use of nephrotoxic medications (*Nash et al.*, 2002).

Among all procedures utilizing CM for diagnostic or therapeutic purposes, coronary angiography and percutaneous coronary interventions (PCI) are associated with the highest rates of CIN (*Nash et al.*, 2002).

The overall incidence of CIN after PCI has been reported between 3.3% and 16.5%, although this figure increases up to 50% in high-risk patients (*Recio-Mayoral et al.*, 2007).

Patients encountered in interventional cardiology practice have multiple risk factors for CIN, such as renal impairment (with and without diabetes), congestive heart failure, reduced arterial pressure, and concurrent use of nephrotoxic medications, and in such patients the incidence of CIN has been reported to range between 11% and 50% (*Rihal et al.*, 2002).

In the interventional cardiology registry from Mayo Clinic including 7586 patients, the incidence of CIN was 3.3% (*Rihal et al.*, 2002).

In a smaller study from William Beaumont Hospital, among 1826 patients treated with PCI, CIN occurred in 14.5% of the cases (*McCullough et al.*, 1997).

Fortunately, among patients undergoing PCI, cases of CIN leading to dialysis are rare (0.5 to 2 percent). However, when they occur, they are related to catastrophic outcomes including a 36 percent in-hospital mortality rate and a 2-year survival of only 19 percent (*Pannu et al.*, 2006).

The frequency of CIN has decreased over the past decade; this is due to a greater awareness of the problem, better

risk prevention measures, and improved iodinated contrast media with less renal toxicity. However, many cases of CIN continue to occur because of the ever-increasing numbers of procedures requiring contrast (*McCullough et al.*, 2008).

In patients undergoing primary PCI for myocardial infarction (MI), short- and long-term mortality rates were also significantly higher in those who developed CIN, Furthermore, in this group, it has been shown that CIN is an independent predictor of mortality (*Marenzi et al.*, 2004).

• Pathogenesis:

The exact underlying mechanisms of CIN are likely to involve the interplay of several pathogenic factors (Figure 1). Intrinsic causes include the following: increased vasoconstrictive forces, decreased local prostaglandins and nitric oxide mediated vasodilatation, a direct toxic effect on renal tubular cells with damage caused by oxygen free radicals, increased oxygen consumption, and increased intra-tubular pressure secondary to contrast induced diuresis, increased urinary viscosity and tubular obstruction, all culminating in renal medulla ischemia. Intrinsic causes act in concert with harmful extrinsic (pre-renal) causes such as dehydration and decreased effective intravascular volume (Bakris et al., 1990).