SERUM INTERLEUKIN-6 AND POLYCYSTIC OVARY SYNDROME

Thesis

Submitted for the Practical Fulfillment of Master Degree in **Obstetrics & Gynecology**

By

Yasmine Diaa Hassan El-Maraghy

MB.B.Ch Ain Shams University 2004

Supervised By

Professor Dr. Khaled Hassan Swidan

Professor of Obstetrics & Gynecology
Ain Shams University

Dr. Ahmed Khairy Makled

Assistant professor of Obstetrics & Gynecology
Ain Shams University

Dr. Mohamed Samir Sweed

Lecturer of Obstetrics & Gynecology
Ain Shams University

Faculty of Medicine Ain Shams University 2013

Acknowledgment

Before all, thanks to God

I would like to express my profound gratitude to Prof.

Doctor/ Khaled Hasssan Swidan, Professor of Obstetrics and Gynecology, Ain Shams University for his valuable advices and support all through the whole work and for dedicating much of his precious time to accomplish this work.

I am also grateful to Assistant Prof. Doctor/ Ahmed Khairy Meklad, Assistant Professor of Obstetrics and Gynecology, Ain Shams University for his considerable help and for the precious time he generously gave me in this work.

My special thanks to Doctor/ Mohamed Samir Sweed, Lecturer of Obstetrics and Gynecology, Ain Shams University for his continuous encouragement and supervision and kind care.

I would like also to thank my family for pushing me forward all the time and for all their support.

Yasmine Diaa Hassan El Maraghy

List of Contents

Title	Page No.
Introduction	1
Aim of the work	3
Review of Literature	
* Polycystic ovary syndrome	4
* Interleukin-6	39
Patients and methods	46
Results	51
Discussion	76
Summary	86
References	89
Arabic summary	

List of Tables

Tab. No.	Title	Page No.
Table (1):	The different diagnostic criteria for polycystic ovary syndrome (PCOS)	7
Table (2):	Comparison between the PCOS group and the control group regarding the age	51
Table (3):	Comparison between the PCOS group and the control group regarding the BMI	52
Table (4):	Comparison between the PCOS and control group regarding WHR	53
Table (5):	Comparison between the PCOS and control group regarding Fasting Serum Glucose	54
Table (6):	Comparison between the PCOS and control group regarding Fasting Serum Insulin	55
Table (7):	Comparison between the PCOS and control group regarding HOMA-IR	56
Table (8):	Comparison between the PCOS and control group regarding serum FSH levels	57
Table (9):	Comparison between the PCOS and control group regarding serum LH levels	58
Table (10):	Comparison between the PCOS and control group regarding FSH/ LH ratio	59
Table (11):	Comparison between the PCOS and control group regarding total testosterone levels	60
Table (12):	Comparison between the PCOS and control group regarding free testosterone levels	61
Table (13):	Comparison between the PCOS and control group regarding serum interleukin-6 levels	62
Table (14):	Correlation between serum IL-6 and age in the PCOS group	65

List of Tables (cont...)

Tab. No.	Title	Page No.
Table (15):	Correlation between serum IL-6 and age in the control group	65
Table (16):	Correlation between serum IL-6 and BMI in PCOS group	66
Table (17):	Correlation between serum IL-6 and BMI in the control group	66
Table (18):	Correlation between serum IL-6 and WHR in the PCOS group	67
Table (19):	Correlation between serum IL-6 and WHR in the control group	67
Table (20):	Correlation between serum IL-6 and Serum glucose in the PCOS group	68
Table (21):	Correlation between serum IL-6 and Serum glucose in the control group	68
Table (22):	Correlation between serum IL-6 and Serum insulin in the PCOS group	69
Table (23):	Correlation between serum IL-6 and Serum insulin in the control group	69
Table (24):	Correlation between serum IL-6 and HOMA-IR in the PCOS	70
Table (25):	Correlation between serum IL-6 and HOMA-IR in the control group	70
Table (26):	Correlation between serum IL-6 and FSH in the PCOS group	71
Table (27):	Correlation between serum IL-6 and FSH in the control group	71
Table (28):	Correlation between serum IL-6 and LH in the PCOS group	72

List of Tables (cont...)

Tab. No.	Title	Page No.
Table (29):	Correlation between serum IL-6 and LH in the control group	72
Table (30):	Correlation between serum IL-6 and FSH/LH ratio in the PCOS group	73
Table (31):	Correlation between serum IL-6 and FSH/LH ratio in the control group	73
Table (32):	Correlation between serum IL-6 and total testosterone in the PCOS group	74
Table (33):	Correlation between serum IL-6 and total testosterone in the control group	74
Table (34):	Correlation between serum IL-6 and free testosterone in the PCOS group	75
Table (35):	Correlation between serum IL-6 and free testosterone in the control group	75

$List \ of \ Figures \\$

Fig. No.	Title	Page No.
Figure (1):	Comparison between PCOS group and control group regarding serum IL-6 level	63
Figure (2):	Roc curve for prediction of PCOS using IL-	64

List of Abbreviations

Abbrev.	Meaning
ACOG	American College of Obstetrics and Gynecology
ACTH	Adrenocorticotropic Hormone
Arg	Argenine
ASRM	American Society for Reproductive Medicine
atRA	All-trans-Retinoic Acid
AUC	Area under the curve
BMI	Body Mass Index
CC	Clomiphene Citrate
CD	Cluster of Differentiation
2 D	2 dimensions
DHEAS	Dihydroepiandrosterone Sulphate
DM	Diabetes Mellitus
E	Estrogen
ELISA	Enzyme Linked Immunosorbant Assay
ESHRE	European Society for Human Reproduction and Embryology
FSH	Follicle Stimulation Hormone
Gly	Glycine
GnRH	Gonadotrophin Releasing Hormone
Gp130	Glycoprotein 130
hCG	Human Chorionic Gonadotropins
hMG	Human menopausal gonadotropins
HOMA IR	Homeostatic model assessment for insulin resistance
17-HP	17- Hydroxyprogesterone
HS	Highly significant
IL-6	Interleukin-6
IL-6R	Interleukin-6 receptor

List of Abbreviations (Cont...)

Abbrev.	Meaning
IR	Insulin Resistance
IU/L	International Unit per liter
IVF	In Vitro Fertilization
IVM	In Vitro Maturation of oocytes
JAKs	Janus Kinases
LH	Luteinizing Hormone
LOD	Laparoscopic Ovarian Drilling
mFG	Modified Ferriman-Gallwey score
MHz	Megahertz
mm	Millimeter
NCAH	Non- classic Congenital Adrenal Hyperplasia
NICHD	National Institute of Child health and Human Development
NIH	National Institute of health
nmol/L	Nanomol per liter
NS	Non significant
21-OH	21- hydroxylase
OHSS	Ovarian Hyperstimulation Syndrome
p	Propability
P	Progesterone
PCOS	Polycystic Ovary Syndrome
pg/ml	Picogram per millileter
pmol/L	Picomol per liter
-PV	Negative predictive value
+PV	Positive predictive value

List of Abbreviations (Cont...)

Abbrev.	Meaning
RIA	Radioimmune Assay
ROC	Receiver operator characteristic curve
S	Significant
SD	Standard deviation
Sgp130	Soluble glycoprotein 130
SHBG	Sex Hormone Binding Globulin
sIL-6R	Soluble Interleukin-6 Receptors
STATs	Signal Transducers and Activators of Transcription
T	Testosterone
TSH	Thyroid Stimulating Hormone
TV-US	Trans-Vaginal Ultra-Sound
WHR	Waist to hip ratio

INTRODUCTION

The polycystic ovary syndrome (PCOS) is the most common hormonal disorder in young women, estimated to affect 5-10% of women through and beyond their reproductive age (*Crosignani and Nicolosi, 2001*).

PCOS is characterized by chronic anovulation or infrequent ovulation, obesity, hirsutism, hyperandrogenism and numerous follicular cysts in enlarged ovaries. PCOS is the leading cause of anovulatory infertility among premenopausal women. Such patients are also at increasing risk of obesity, insulin resistance, type 2 diabetes mellitus, premature atherosclerosis and endometrial cancer (*Dasgupta and Reddy*, 2008).

Ovarian macrophages play a paracrine role in the regulation of ovarian function through the local secretion of regulatory molecules. Numerous studies have shown that a variety of cytokines such as interleukin-6 (IL-6) can exert profound effects on ovarian function and probably also on reproductive processes (*Salmassi et al.*, 2001).

Proper follicle development is dependent on the proper cytokines and growth factors milieu. Cytokines are small proteins that act locally on immune system and the surrounding tissues (*Wu et al.*, 2004).

These cytokines impact many aspects of ovarian functions including follicle growth and differentiation, ovulation, corpus luteum formation and function (*Wu et al.*, 2004).

PCOS women undergoing IVF were noted to have higher serum concentration of IL-6 during ovarian suppression than women undergoing IVF for male factor infertility. They also have higher serum and follicular concentrations of IL-6 at the time of ovum retrieval (*Amato et al.*, 2003).

AIM OF THE WORK

The aim of the study is to investigate the association between serum IL-6 concentration and polycystic ovary syndrome.

Chapter 1

POLYCYSTIC OVARY SYNDROME

1- Historical background:

In 1935, Irving F. Stein and Michael L. Leventhal first described symptom complex a associated anovulation. They described seven patients (four of whom were obese) with amenorrhea, hirsutism, infertility. After conservative therapies failed, the women underwent laparotomy, which revealed enlarged ovaries with thickened tunica and multiple (20-100 per ovary) follicle cysts. Stein and Leventhal developed the wedge resection after they observed that several of their amenorrheic women menstruated after ovarian biopsies. They reasoned that the thickened tunica was preventing the follicles from reaching the surface of the ovary. The condition was for a long time called the Stein- Leventhal syndrome. After bilateral wedge resection, removing one-half to three-fourth of each ovary, all 7 patients regain menstruation and two of them became pregnant (Stein and Leventhal, 1935).

2- Definition

a- Basics:

It should be recognized that polycystic ovary syndrome (PCOS) is still a "syndrome", namely a