

Ain Shams University Faculty of Science Geology Department

# Effect of stabilizers in the improvement of engineering properties of soil in some localities of the Nile Delta, Egypt.

By Zeinab Lotfy El Sayed Belal (B. Sc., M. Sc., Geology)

A Thesis

For

The Doctor of Philosophy Degree of Science in Geology

Department of Geology Faculty of Science Ain Shams University 2013



Ain Shams University Faculty of Science Geology Department

#### APPROVAL SHEET

**Ph.D Thesis** 

Name of student: Zeinab Lotfy El Sayed Belal

Thesis title: Effect of stabilizers in the improvement of engineering properties of soil in some localities of the Nile Delta, Egypt.

**Supervisors** Approval

1- Prof. Dr. Mohamed. I. El- Wakeel.

Professor of Geology, Geology Department, Faculty of Science, Ain Shams University.

2- Prof. Dr. Ahmed. S. A. Abu El-Atta

Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University.

3- Assoc. Prof. Dr. Ali. I. M. Ismail

Associate Professor of Engineering Geology, Geological Sciences Department, National Research Centre

**Head of Geology Department** 

Prof. Yasser Abd El- Hakim El- Safoury



Ain Shams University Faculty of Science Geology Department

#### **APPROVAL SHEET**

#### **Ph.D Thesis**

Name of student: Zeinab Lotfy El Sayed Belal

Thesis title: Effect of stabilizers in the improvement of engineering properties of soil in some localities of the Nile Delta, Egypt.

| SI | UPERVISORS:                                                                                                                              | Approval |
|----|------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1- | Prof. Dr. Mohamed. I. El- Wakeel. Professor of Geology, Geology Department, Faculty of Science, Ain Shams University.                    |          |
| 2- | Prof. Dr. Ahmed. S. A. Abu El-Atta<br>Professor of Geophysics, Geophysics Department, Faculty of Science,<br>Ain Shams University.       |          |
| 3- | Assoc. Prof. Dr. Ali. I. M. Ismail Associate Professor of Engineering Geology, Geological Sciences Department, National Research Centre. |          |

#### **REFEREE COMMITTEE:**

|    |                                                                           | Approval |
|----|---------------------------------------------------------------------------|----------|
|    | Prof. Dr. Mohamed. R.G. El Tahlawy                                        |          |
| 1- | Professor of Mining and Metallurgical Geology, Mining and Metallurgical   |          |
|    | Department, Faculty of Engineering, Assiut University.                    |          |
|    | Prof. Dr. Laila A.M.Fayed                                                 |          |
| 2- | Professor of Engineering Geology, Geology Department, Faculty of Science, |          |
|    | Cairo University.                                                         |          |
|    | Prof. Dr. Mohamed. I. El- Wakeel.                                         |          |
| 3- | Professor of Geology, Geology Department, Faculty of Science, Ain Shams   |          |
|    | University.                                                               |          |
|    | Prof. Dr. Ahmed. S. A. Abu El-Atta                                        |          |
| 4- | Professor of Geophysics, Geophysics Department, Faculty of Science, Ain   |          |
|    | Shams University.                                                         |          |

**Head of Geology Department** 

Prof. Yasser Abd El- Hakim El- Safoury

#### ACKNOWLEDGMENTS

All gratitude is due to almighty "**ALLAH**" the lord of the world who guided aided me to finish this thesis. Thanks God for everything in my life.

Thanks to Dr. Yasser Abd El- Hakim El- Safoury Professor of Geology and Head of Geology Department, Faculty of Science, Ain Shams University for his encouragements.

My deep thanks to board members of the National Research Centre for offer me a chance to finish my thesis through the principal supervisor Assoc. Prof. Dr. Ali I. M. Ismail.

Special gratitude and deep thanks to Prof. Dr. Ahmed Abu Atta, Geophysics Department, Faculty of Science, Ain Shams University for supervising the work and valuable advices.

All deep thanks are due to Prof. Dr. Mohamed Al Wakeel, Geology Department, Faculty of Science, Ain Shams University for his supervision, guidance and support.

I express my sincere and very deep thanks and gratitude to my principal supervisor Dr. Ali I. M. Ismail, Associate Professor of Engineering Geology, Geological Sciences Department, National Research Centre for suggesting and planning this work. His wise guidance through the field and experimental work, offering me standards methods and software used in this work, choosing the stabilizers used in this study, facilities offered during the thesis work from his national and international projects especially Swedish project, provided solutions to different problems, valuable enthusiastic discussion throughout the present work, reading and correcting of the manuscripts.

Gratefulness and my deep thanks to my late father, my lovely mother and my lovely sister for their continuous moral support.

### Zeinab lotfy



Ain Shams University Faculty of Science Geology Department

Ph. D. Thesis:

Name of Student: Zeinab Lotfy El Sayed

Title of thesis: Effect of stabilizers in the improvement of engineering

properties of soil in some localities of the Nile Delta, Egypt.

#### **ABSTRACT**

The present work is concerned with the study of engineering parameters, through the mineralogical composition of four soil groups from the Nile Delta, as well as evaluating the effectiveness of Cement Kiln Dust (CKD) and Granulated Blast Furnace Slag (GBFS) in stabilizing the selected soils. From the laboratory test results, five major soil groups were recognized on the basis of similarity in geo-engineering behaviours. The soils are generally fine grained and they are essentially clays with varying proportions of sand, silt and organic matter. The values of the various parameters indices are mainly influenced by the amounts of clay (and/or sand) and organic matter. Accordingly, the collected soil samples from specific localities of the Nile Delta were classified into four groups; group 1 is represented by extremely high plasticity, low compressive strength, high optimum moisture content and low maximum dry density; group 2 and group 3 are very high plasticity and high plasticity. respectively, whereas group 4 is characterized by medium plasticity. Clay fraction, liquid limit, plastic limit, plasticity index, swelling, shrinkage and the optimum moisture content values decrease through the soil groups from group 1 to group 4, whereas the compressive strength and maximum dry density increase in the same direction.

CKD, GBFS and CKD-GBFS mixture was added to two different soil types, in which the results show that, CKD, GBFS and CKD-GBFS mixture reduced the plasticity index, as compared to the untreated soil. With increasing the curing time, the plasticity index (PI) decreases with increasing the percentage of stabilizer whether CKD or GBFS. According to the engineering characteristics, the first one is mainly clay in composition and the second is mainly silt and fine sand. The effects of the used stabilizers (CKD and GBFS) on the two types of soils are completely different. Soil I, that located at Nasayma Village (Daqahlia Governorate) is mainly affected by CKD and the mixture of CKD and GBFS. On the other hand, the slag is an effective stabilizer on the soil II at El Mahala El Kobra area (Gharbyia Governorate), whereas CKD improved the soil workability. It is noticed that, the behaviour of slag is comparable to lime and CKD like cement in the soil improvement. The slag is used for the clayey soil, whereas the CKD is utilized in the sandy-silt soils in the stabilization purposes of the areas under investigation. The mixture of both additives is highly recommended for the stabilization of the selected soil materials, where the results of compressive strength increase at all curing times.

**Key words:** Engineering parameters, Construction problems, Plasticity index, Nile Delta.

## **CONTENTS**

|       |                                             |                                         |                                         | Page |
|-------|---------------------------------------------|-----------------------------------------|-----------------------------------------|------|
| ACKN  | OWL                                         | EDGMEN                                  | VTS                                     |      |
| ABST  | RACT.                                       | •••••                                   |                                         | I    |
| CONT  | TENTS.                                      | • • • • • • • • • • • • • • • • • • • • |                                         | II   |
| LISTS | OF FI                                       | GURES                                   |                                         | V    |
| LISTS | OF TA                                       | ABLES                                   | •••••                                   | VII  |
| PLAT  | ES                                          | • • • • • • • • •                       | •••••                                   | VIII |
| CHAI  |                                             |                                         | DUCTION                                 |      |
| 1.1   | Genera                                      | al Outline                              |                                         | 1    |
| 1.2   | Proble                                      | m Definiti                              | ion                                     | 1    |
| 1.3   |                                             |                                         |                                         | 5    |
|       |                                             |                                         | OGIC SETTING AND SITE                   |      |
| INVE  |                                             |                                         |                                         |      |
| 2.1   |                                             |                                         |                                         | 10   |
| 2.2   | Soils s                                     | election                                |                                         | 10   |
| 2.3   | Site in                                     | vestigatio                              | n                                       | 12   |
| 2.4   |                                             |                                         | ation                                   | 14   |
| 2.5   |                                             |                                         | ernary sediments                        | 17   |
| 2.6   | Lithofacies Distribution and paleogeography |                                         |                                         | 18   |
|       | 2.6.1 Pleistocene fluvial sands             |                                         |                                         | 18   |
|       | 2.6.2 Pleistocene – Holocene boundary       |                                         | 18                                      |      |
|       |                                             |                                         | e Nile mud                              | 19   |
|       |                                             |                                         | TE MATERIALS CHARACTERIZATION           |      |
| 3.1   |                                             |                                         |                                         | 23   |
| 3.2   | Experi                                      | mental pr                               | ogram                                   | 23   |
|       | 3.2.1                                       | Field tes                               | t                                       | 23   |
|       | 3.2.2                                       | Laborato                                | ory Test                                | 24   |
|       | 3.2.3                                       | Physical                                | l and engineering behaviour of the soil | 24   |
|       | 3.2.3                                       | material                                | S                                       |      |
|       |                                             |                                         | PH                                      | 24   |
|       |                                             |                                         | Specific Gravity of Soils               | 24   |
|       |                                             | 3.2.3.3                                 | Organic Content                         | 25   |
|       |                                             | 3.2.3.4                                 | Grain-Size Analysis                     | 25   |
|       |                                             | 3.2.3.5                                 | Atterberg Limits                        | 26   |
|       |                                             | 3.2.3.6                                 | Linear shrinkage                        | 29   |
|       |                                             | 3.2.3.7                                 | Free swelling                           | 29   |
|       |                                             | 3.2.3.8                                 | Compaction Tests                        | 30   |
|       |                                             | 3.2.3.9                                 | Soil strength.                          | 31   |
| 3.3   | Soil ch                                     | aracterist                              | ics                                     | 32   |

|      |         |             |                 |                                                    | Page     |  |
|------|---------|-------------|-----------------|----------------------------------------------------|----------|--|
| 3.4  | Geo-e   | ngineering  | characterist    | ics of soil materials                              | 35       |  |
|      | 3.4.1   | Soil char   | racterization.  |                                                    | 35       |  |
|      |         | 3.4.1.1     |                 | analysis and soil classification                   | 35       |  |
|      |         | 3.4.1.2     | Atterberg li    | mits                                               | 38       |  |
|      |         |             | 3.4.1.2.1       | Liquid limit                                       | 38       |  |
|      |         |             | 3.4.1.2.2       | Plastic limit                                      | 38       |  |
|      |         |             | 3.4.1.2.3       | Relation between PI and L.L                        | 38       |  |
|      |         |             | 3.4.1.2.4       | Relation between Atterberg limits and clay content | 39       |  |
|      | 3.4.2   | Swelling    | gand shrinka    | ge                                                 | 39       |  |
|      | 3.4.3   | Soil com    | paction         |                                                    | 43       |  |
|      | 3.4.4   | Unconfi     | ned compress    | sive strength                                      | 46       |  |
| 3.5  | Miner   |             |                 | soil materials                                     | 47       |  |
|      | 3.5.1   | Clay min    | erals           |                                                    | 49       |  |
|      |         | 3.5.1.1     | Specific sur    | face area                                          | 50       |  |
|      |         | 3.5.1.2     |                 | al Structure                                       | 51       |  |
|      |         |             | 3.5.1.2.1       | Kaolinite                                          | 52       |  |
|      |         |             |                 | Illite                                             | 53       |  |
|      |         |             | 3.5.1.2.3       | Smectite group                                     | 53       |  |
|      |         | 3.5.1.3     | Structural a    | rrangement of clay minerals                        | 54       |  |
|      | 3.5.2   |             | to physical p   | 55                                                 |          |  |
|      | 3.5.3   | X-Ray D     | iffraction (X   | RD)                                                | 55       |  |
|      |         | 3.5.3.1     |                 | 1                                                  | 55       |  |
|      |         | 3.5.3.2     | Results of Y    | KRD and SEM                                        | 56       |  |
|      |         |             | 3.5.3.2.1       | Clay minerals and Non clay minerals                | 57       |  |
| 3.6  | Correl  | ation betw  | een engineer    | ring parameters and clay                           | 64       |  |
| 3.0  | minera  | alogy       |                 |                                                    |          |  |
| 3.7  | Classi  | fication sy | stem of clays   | S                                                  | 65       |  |
|      | 3.7.1   | Geologic    | cal classificat | ion                                                | 65<br>65 |  |
|      | 3.7.2   | Engineer    | ring classifica | ing classification                                 |          |  |
|      |         | 3.7.2.1     | AASHTO          |                                                    | 65       |  |
|      |         | 3.7.2.2     | Unified soil    | classification systems                             | 66       |  |
| 3.8  | Classi  | fication of | soil under in   | vestigation                                        | 68       |  |
| CHAP | TER I   | V: BACK     | GROUND (        | ON SOIL STABILIZATION                              |          |  |
| 4.1  | Gener   | al conside  | eration         |                                                    | 72       |  |
| 4.2  | Stabili | zing agen   | t <u></u>       |                                                    | 72       |  |
|      |         |             |                 | ation                                              |          |  |
| 4.3  | Literat | tures revie | w of slag and   | l CKD in soil stabilization                        | 73       |  |
|      | 4.3.1   | Cement      | Kiln Dust (C    | KD)                                                | 74       |  |

|                                       |                                                                              |                                         |                                               | Page     |  |
|---------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|----------|--|
|                                       | 4.3.2                                                                        | Slag                                    |                                               | 78       |  |
| 4.4                                   | Stabilizer used in this study                                                |                                         |                                               | 80       |  |
|                                       | 4.4.1                                                                        | Cement                                  |                                               | 81       |  |
|                                       |                                                                              | 4.4.1.1                                 | The variability in the chemical properties of | 83       |  |
|                                       |                                                                              | 4.4.1.1                                 | CKD                                           |          |  |
|                                       | 4.4.2                                                                        | Slag                                    |                                               | 83       |  |
| CHAPTER V: IMPROVEMENT OF ENGINEERING |                                                                              |                                         |                                               |          |  |
| PARA                                  | METE                                                                         | RS OF S                                 | OIL MATERIALS                                 |          |  |
| 5.1                                   | Genera                                                                       | al                                      |                                               | 88       |  |
| 5.2                                   | Stabili                                                                      | zation me                               | thods                                         | 88       |  |
| 5.3                                   | Industr                                                                      | ry waste p                              | roducts                                       | 89       |  |
| 5.4                                   | Identif                                                                      | ication of                              | materials                                     | 90       |  |
|                                       |                                                                              |                                         | uct                                           | 90       |  |
|                                       | 5.4.2                                                                        | Soils                                   |                                               | 92       |  |
| 5.5                                   |                                                                              |                                         |                                               | 92       |  |
| 5.6                                   |                                                                              |                                         |                                               | 94       |  |
|                                       | 5.6.1 Effect of stabilizers curing time on Atterberg limit of soils (I & II) |                                         |                                               |          |  |
| 5.7                                   |                                                                              |                                         |                                               |          |  |
|                                       | Tasting methods, sempling properties and mixing                              |                                         |                                               | 98<br>98 |  |
|                                       | 5.7.1                                                                        | procedures                              |                                               |          |  |
|                                       | 5.7.2                                                                        | Effect of                               | stabilizers on the compaction                 | 103      |  |
|                                       | 5.7.3                                                                        | Effect of                               | stabilizers on the unconfined compressive     | 105      |  |
|                                       | 5.7.3                                                                        |                                         | ······                                        |          |  |
| 5.8                                   | Scanni                                                                       | ng electro                              | on microscope (SEM)                           | 108      |  |
| CHAP                                  |                                                                              |                                         | IARY AND CONCLUSIONS                          | 113      |  |
| REFE                                  | RENCI                                                                        | ES                                      | •••••                                         | 121      |  |
| APPE                                  | NDIX                                                                         | • • • • • • • • • • • • • • • • • • • • |                                               |          |  |
| APPE                                  |                                                                              |                                         | •••••                                         | 136      |  |
|                                       | APPENDIX I A1 Grain size analysis (Wet sieving and                           |                                         |                                               | 137      |  |
|                                       | Hydrometers)                                                                 |                                         |                                               |          |  |
|                                       | APPE                                                                         | NDIX I A                                | 2 Atterberg limits                            | 140      |  |
|                                       | APPE                                                                         | NDIX I A                                | 3 Compaction test for untreated soil          | 144      |  |
| APPE                                  | NDIX II                                                                      |                                         |                                               | 123      |  |
|                                       | APPE                                                                         | NDIX II A                               | 4 Compaction test for treated soil            | 150      |  |
|                                       | APPE                                                                         | NDIX II A                               | A5 Atterberg limits curing time               | 153      |  |
| ARAB                                  | IC SUN                                                                       | MARY.                                   |                                               |          |  |

## LIST OF FIGURES

| Fig.No | Title                                                     | Page |
|--------|-----------------------------------------------------------|------|
| 1.1    | Flow chart of the field and laboratory tests on the       | 8    |
|        | studied soil samples                                      |      |
| 2.1    | Location map of studied soil samples                      | 11   |
| 2.2    | Some type of soils illustrated in Fig.2.1 showing some    | 12   |
|        | construction problems in the area of study                |      |
|        | Composite Neogene-Quaternary stratigraphic column         |      |
| 2.3    | including the average thickness and environment of the    | 15   |
|        | examined formations                                       |      |
| 2.4    | Schematic cross section showing the characteristics of    | 20   |
| 2.4    | upper Quaternary features of some localities in the Nile  | 20   |
| 2.1    | Delta                                                     | 27   |
| 3.1    | Atterberg Limits Relationships                            | 27   |
| 3.2    | Measurments of unconfined compressive strength            | 31   |
| 3.3    | Ternary diagram of the clay-silt-sand composition of the  | 37   |
|        | studied soil samples                                      | 40   |
| 3.4    | Plasticity classification of the studied soil             | 40   |
| 3.5    | Showing the relation between plasticity index and clay    | 40   |
| 3.6    | Showing the relation between free swelling & plasticity   | 42   |
|        | Showing the relation between free swelling & clay         |      |
| 3.7    |                                                           | 42   |
| 3.8    | Compaction curves for the studied soil                    | 44   |
| 3.0    | Showing the relation between unconfined compressive       | 44   |
| 3.9    | strength and mud fraction and the engineering             | 47   |
| 3.9    | parameters                                                | 47   |
| 3.10   | Sheet structure of clay minerals                          | 51   |
|        | Major type of clay minerals, a: Kaolinite, b:Illite and   |      |
| 3.11   | c: Montmorillonite                                        | 52   |
|        | Structure arrangements of clay minerals, a: dispersed, b: |      |
| 3.12   | flocculated, c: bookhouse, d: turbostratic and e: example | 54   |
| 3.12   | of natural clay soil                                      | 51   |
| 3.13   | X-Ray diffraction of the analyzed bulk samples soil in    |      |
|        | the Nile Delta                                            | 58   |
| 3.14   | Clay fraction versus Liquid limit, Plastic limit, free    |      |
|        | swelling and shrinkage limit for the untreated samples    | 64   |
| 3.15   | Free swelling versus Liquid limit and Plastic limit, for  |      |
|        | the untreated samples                                     | 64   |
| 3.16   | General guidance for AASHTO classification                | 66   |
|        |                                                           |      |