EFFECT OF NUTRITIONAL MANIPULATION DURING HEAT STRESS ON PERFORMANCE OF LACTATING COWS

By

EHAB NASR MEEBED AHMED DAOUD

B.Sc. Agric. Sc. (Animal Production), Cairo University, 2002

A thesis submitted in partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE

in

Agriculture Science (Animal Nutrition)

Department of Animal Production Faculty of Agriculture Ain Shams University

Approval sheet

EFFECT OF NUTRITIONAL MANIPULATION DURING HEAT STRESS ON PERFORMANCE OF LACTATING COWS

By

EHAB NASR MEEBED AHMED DAOUD

B.Sc. Agric. Sc. (Animal Production), Cairo University, 2002

This thesis for M.Sc. degree has been approved by:

Dr. Gamal El-Din Aly Abd EL- Rahman Prof. Emeritus of Animal Nutrition, Faculty of Agriculture, Zagazig University Dr. Ahmed Abdel- Latif Zaky El-Basiony Prof. of Animal Nutrition, Faculty of Agriculture, Ain Shams University Dr. Salwa Mahmoud Hamdy Prof. Emeritus of Animal Nutrition, Faculty of Agriculture, Ain Shams University Dr. Hussein Saad Soliman Prof. Emeritus of Animal Nutrition, Faculty of Agriculture, Ain

Date of Examination: 19 / 7 / 2011

Shams University

EFFECT OF NUTRITIONAL MANIPULATION DURING HEAT STRESS ON PERFORMANCE OF LACTATING COWS

By

EHAB NASR MEEBED AHMED DAOUD

B.Sc. Agric. Sc. (Animal Production), Cairo University, 2002

Under the supervision of:

Dr. Hussein Saad Soliman

Prof. Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Hamdy Mohamed Ahmed El-Sayed

Prof. of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Salwa Mahmoud Hamdy

Prof. Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

تاثير المعالجة الغذائية خلال الإجهاد الحراري على أداء ألابقار الحلابة

رسالة مقدمة من إيهاب نصر معبد أحمد داود إيهاب نصر معبد أحمد داود بكالوريوس علوم زراعية (إنتاج حيواني) ، جامعة القاهرة ، 2002

للحصول على درجة الماجستير في العلوم الزراعية (تغذية حيوان)

قسم الانتاج الحيواني كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة

تأثير ألمعالجة الغذائية خلال الإجهاد الحرارى على أداء ألابقار الحلابة

رسالة مقدمة من إيهاب نصر معبد أحمد داود اليهاب نصر معبد أحمد داود بكالوريوس علوم زراعية (إنتاج حيواني) ، جامعة القاهرة، 2002

للحصول على درجة الماجستير في العلوم الزراعية (تغذية حيوان)

وقد تمت مناقشة الرسالة والموافقة عليها

1	اللجنة:
د. جمال الدين على عبد الرحمن	
أستاذ تغذية الحيوان المتفرغ ؛ كلية الزراعة	ة ، جامعة الزقازيق
د. احمد عبد اللطيف زكى البسيوني	
أستاذ تغذية الحيوان، كلية الزراعة ؛ جامع	فة عين شمس
د. سلوی محمود حمدی	
أستاذ تغذية الحيوان المتفرغ ، كلية الزراعة	ة ، جامعة عين شمس
د. حسین سعد سلیمان	
أستاذ تغذية الحيوان المتفرغ ، كلية الزراعة	ة ، جامعة عين شمس
تاريخ المناقشة: 19 / 7 / 2011	

جامعة عين شمس كلية الزراعة قسم الإنتاج الحيواني

رسالة ماجستير

اسم الطالب : إيهاب نصر معبد أحمد داود

عنوان الرسالة : تأثير المعالجة الغذائية خلال الإجهاد الحراري على أداء

ألابقار الحلابة

اسم الدرجة : ماجستير في العلوم الزراعية (تغذية حيوان)

لجنة الإشراف:

د. حسین سعد سلیمان

أستاذ تغذية الحيوان المتفرغ ، قسم الإنتاج الحيواني ، كلية الزراعة ، جامعة عين شمس (المشرف الرئيسي)

د. حمدى محمد أحمد السيد

أستاذ تغذية الحيوان ، قسم الإنتاج الحيواني ؛ كلية الزراعة ، جامعة عين شمس

د. سلوی محمود حمدي

أستاذ تغذية الحيوان المتفرغ ، قسم الإنتاج الحيواني ؛ كلية الزراعة ، جامعة عين شمس

تاريخ التسجيل: 6 / 2 / 2006 الدراسات العليا

ختم الإجازة أجيزت الرسالة بتاريخ 2011 / 7 / 19 موافقة مجلس الكلية موافقة مجلس الجامعة 2011 / / 2011

ABSTRACT

Ehab Nasr Meebed Ahmed Daoud: Effect of Nutritional Manipulation During Heat Stress on Performance of Lactating Cows. Unpublished M.Sc. Thesis, Department of Animal Production Faculty of Agriculture, Ain Shams University, 2011

This investigation was carried out at two studies, the first aimed to evaluate the effect of using fibrolytic enzymes (Fibrozyme) on reducing the effect of heat stress on performance (milk production, composition and some blood parameters) of lactating Holstein Friesian cows.

Total of 92 Holstein dairy cows (in early, mid and late lactation (multiparous =60 and primiparous = 32) were distributed among two groups; G1: control un-supplemented ration. N= 46 G2: Fibrozyme supplemented ration N=46.

Cows in the two groups were fed as a group open feed and fed a total mixed ration (TMR) consisting of similar amounts of alfalfa hay, corn silage, alfalfa clover, sunflower meal, linseed meal, gluten meal 60%, soybean, yellow corn ,lime stone, vitamins, mineral mixture, protected fat (magnapae), sodium bicarbonate and calcium diphosphat.

Milk yield, FCM yield, and total solids yield were significantly increased. Milk composition was not significantly affected by adding Fibrozyme, except milk fat percentage was significantly increased. Adding Fibrozyme supplementation caused significant increase in serum total protein content, glucose, Triiodothyronine (T3), total bilirubin, and Globulin. The objective of second study was to evaluate the effect of Fibrolytic enzyme on nutrient digestibilities and rumen parameters of tested sheep during heat stress.

Barki Lambs 50 Kg ± 1.5 initial live body Weight were randomly designed among Four groups; G1 control 1(un-supplemented ration and un-shaded pin N=3), G2 Control 2 (un-supplemented ration

and shaded pin N=3), G3 Fibrozyme1 (supplemented ration with fibrolytic enzyme 10g/h/d and un-shaded pin: N= 3), G4 Fibrozyme2 (supplemented ration with fibrolytic enzyme 10g/h/d and shaded pin: N= 3) each group was placed in a pen equipped with free stalls.

Lambs in the four groups fed a common concentrate mixture and free access to *sorgam grass* as a source of forage. Daily ration were adjusted biweekly according to changes in body weight. The animals were fed their rations in groups as a rate of 3% of their average live body Weight (40: 60 roughage: concentrate ration.

The obtained results indicated that supplementation of Fibrozyme had significant effect on dry DMI as concentrate, roughage and total DMI (g/h/d), Nutrient digestibility's war not significantly affected by adding Fibrozyme as DM, OM, but CP, CF and EE was significant effect for supplemented group compared with control group.

The Fibrozyme supplement had no significant effect on Rumen liqueur PH value and TVF'S production compared with un-supplemented., Rumen liqueur ammonia concentration in control group was significantly higher than Fibrozyme.

It can be concluded from the two studies that supplementation the diets with Fibrozyme alleviates the heat stress effect in dairy cows through modulating most blood metabolites to its normal range and improving both thyroid activity and feed utilization and enhance milk production, composition of heat-stressed dairy cow under Egyptian summer conditions. It also alleviate the heat stress effect in sheep through improvement DMI ,Nutrient digestibilities , Feeding values and enhance rumen liquor parameters and feeding efficiency.

KeyWords: Heat stress, Fibrolytic enzymes (Fibrozyme), Holstein Friesian cow, milk yield and composition, Barki sheep

LIST OF CONTENT

		page
	LIST OF TABLE	
	LIST OF FIGURS	
	LIST OF APPREVIATIONS	
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	4
2-1	Heat stress	4
2-1-1	Heat stress definition	4
2-12	Heat stress and temperature-humidity index (THI)	4
2-2	Impact of heat stress	6
2-2-1	Impact of heat stress on body temperature and respiration rate	6
2-2-2	Impact of heat stress on fed intake	7
2-2-3	Impact of heat stress on milk production	8
2-2-4	Impact of heat stress on milk composition	9
2-2-5	Impact of heat stress on rumen parameters	11
2-2-5-1	Impact of heat stress on ruminal volatile fatty acids percentage	11
2-2-5-2	Impact of heat stress on rumen passage rate	12
2-2-5-3	Impact of heat stress on rumen pH	13
2-2-5-4	Impact of heat stress on rumen activity	14
2-2-6	Impact of heat stress on blood parameters	15
2-3	Impact of fibrolytic enzymes	18
2-3-1	Reasons for using enzymes in animal feed	18
2-3-2	Enzyme definition and pathway	19
2-3-3	Methods of fibrolytic enzymes administration	21
2-3-4	Impact of Fibrozyme supplementation on productivity	22
2-3-5	Impact of Fibrozyme supplementation on nutrient digestion	27
2-3-6	Impact of Fibrozyme supplementation on rumen characteristics	29
2-3-7	Impact of Fibrozyme supplementation on milk composition	31
2-3-8	Impact of Fibrozyme supplementation on growth performance	34
2-3-9	Impact of Fibrozyme supplementation on blood parameters	35
2-4	Impact of use shading	36

3	MARTIAL AND METHODS	39
3-1	First experiment	39
3-1-1	Experimental animals.	39
3-1-2	Experimental rations	39
3-1-3	Management	40
3-1-3-1	Pretrial period	40
3-1-3-2	Trial period	41
3-1-4	Environmental conditions	42
3-1-5	Techinqual assessments	43
3-1-5-1	Physiological responses	43
A	Body temperature	43
В	Respiration rate	43
3-1-5-2	Samples and chemical analysis	44
3-1-5-2-1	Feedstuff	44
3-1-5-2-2	Milk yield and composition	44
3-1-5-2-3	Blood sampling and analyze	44
A	Metabolites concentration	44
В	Thyroid hormone	45
3-2	Second experimental	45
3-2-1	Experimental animals	45
3-2-2	Experimental rations	46
3-2-3	Management	46
3-2-4	Digestibility study	47
3-2-5	Sampling and chemical analysis	48
3-2-5-1	Feedstuff and fecal analysis	48
3-2-5-2	Rumen liquor parameters	48
3-2-6	Statistical analysis	48
4	RESULT AND DISCUSSION	51
4-1	First experiment	51
4-1-1	Rectal temperature and respiration rate	51
4-1-2	Feed intake	52
4-1-3	Milk production	56

4-1-4	Milk composition	61
4-1-5	Feed conversion	64
4-1-6	Blood parameter	64
4-2	Second experiment	68
4-2-1	Nutrient digestibility and feeding values	68
4-2-1-1	Effect of Fibrozyme supplementation	68
4-2-1-2	Effect of shading	71
4-2-1-3	Effect of interaction between Fibrozyme and shading	74
4-2-2	Rumen liquor parameters	78
4-2-2-1	pH value	78
4-2-2-1-1	Effect of Fibrozyme supplementation	78
4-2-2-1-2	Effect of shading	79
4-2-2-1-3	Effect of interaction between Fibrozyme and shading on pH value	80
4-2-2-2	Totals volatile fatty acids (VFA's)	81
4-2-2-2-1	Effect of Fibrozyme supplementation	81
4-2-2-2	Effect of shading	82
4-2-2-3	Effect of interaction between Fibrozyme and shading on VFA's	
	concentrations	83
4-2-2-3	Ammonia concentration	84
4-2-2-3-1	Effect of Fibrozyme supplementation	84
4-2-2-3-2	Effect of shading	85
4-2-2-3-3	Effect of interaction between Fibrozyme and shading on ammonia	
	concentrations	85
4-2-3	Feeding efficiency	86
5	SUMMARY AND CONCLUSION	89
6	REFERENCES	93
	ARARIC SOUMMARY	

LIST OF FIGURES

Fig.		Page
1	Effect of fibrolytic enzyme supplementation on TMRI (as	
	feed), DMI and NE _L I of lactating Holstein cows	54
2	Effect of fibrolytic enzyme supplementation on TDNI of	
	lactating Holstein cows	55
3	Effect of fibrolytic enzyme supplementation on CP intake of	
	lactating Holstein cows	55
4	Effect of fibrolytic enzyme supplementation on milk yield and	
	FMC of lactating Holstein cows	58
5	Effect of fibrolytic enzyme supplementation on fat, total solid,	
	protein, lactose and SNF yields of lactating Holstein cows	58
6	Effect of stage of lactation on milk yield of lactating Holstein	
	cows supplemented with Fibrozyme	60
7	Effect of lactation number on milk yield of lactating Holstein	
	cows supplemented with Fibrozyme	61
8	Effect of fibrolytic enzyme supplementation on milk	
	composition (total solids. and solid not fat.) of lactating	
	Holstein cows	63
9	Effect of fibrolytic enzyme supplementation on milk	
	composition (fat, protein, lactose and ash) of lactating Holstein	
	cows	63
10	Effect of fibrolytic enzyme supplementation on feed	
	conversion of lactating Holstein cows	65
11	Effect of fibrolytic enzyme supplementation on some blood	
	parameters of lactating Holstein cows (GPT, GOT, Glucose,	
	Urea, Alk. Phos., and T3)	67
12	Effect of fibrolytic enzyme supplementation on some blood	
	parameters of lactating Holstein cows (Albumin, Protein and	
	Globulin and A/G ration).	68
13	Effect of Fibrozyme supplementation on feed intake for Barki	
	sheep	70

14	Effect of Fibrozyme supplementation on nutrient digestibility
	for Barki Lambs
15	Effect of Fibrozyme supplementation on feeding values for
	Barki lambs
16	Effect of shading on feed intake for Barki sheep of Barki
	Lambs
17	Effect of shading on nutrient digestibility for Barki Lambs
18	Effect of shading on feeding value for Barki Lambs
19	Effect of interaction between Fibrozyme and un-shading on
	feed intake of Barki Lambs
20	Effect of interaction between Fibrozyme and shading on
	feeding values of Barki Lambs
21	Effect of interaction between Fibrozyme and shading on intake
	of Barki Lambs
22	Effect of interaction between Fibrozyme and shading on
	nutrient digestibility of Barki Lambs
23	Effect of interaction between Fibrozyme and shading on
	feeding values of Barki Lambs
24	Effect of Fibrozyme supplementation on ruminal liquor pH for
	Barki sheep
25	Effect of shading on ruminal liquor pH for Barki Lambs Effect
	of Fibrozyme supplementation on ruminal liquor VFA's for
	Barki Lambs
26	Effect of shading on ruminal liquor VFA's for Barki Lambs
27	Effect of Fibrozyme supplementation on ruminal liquor
	ammonia concentration for Barki Lambs
28	Effect of shading on ruminal liquor ammonia concentration for
	Barki Lambs
29	Effect of different treatments on feed efficiency for Barki
	Lambs
30	Effect of different treatments on feed conversion of Barki
	Lambs