مقارنة بين أثنتين من تقنيات الخياطه في إصلاح إصابه الوتر العميق القابض للإصبع في منطقه (٢)

ر سالة تدرئ نكك شفك عو خنج نطفخ قتموق غى جفح بطفة جۇك

مقدم من ض/ علنه معلك على الطلاط الطلاط المعلى المواطنة المواطنة

تحت إشراف

أد / عبده محمد عبد الله درويش آزة تدم في زخزل جفح بكة جلك - تكي بكس ا- جلع بك لعيد

د. / أحمد محروس محمد آزةتد لزدُعج جفح بطهم جند مطف في مطهة جليك - في بطف ا - جدلع بطك الميد

د. حسام محمد أبو العطا آزة د لزدع جف بطهة جلك تي بطس ا- جدلع عي م سد ز

> كلية الطب جامعة عين شمس ٢٠١٣

Comparison Between Two Techniques in Repair of Flexor Digitorum Profundus Tendon Injury in Zone (II)

Thesis
Submitted for Partial Fulfillment of M.D. Degree
In Plastic Surgery

By
Amr Nabil Abd-El Galil Kotb
M.B.B.CH., M.Sc.

Under Supervision Of

Prof. Mostafa Abd-El Rahman Awad

Prof. of Plastic & Reconstructive Surgery Faculty of Medicine - Ain Shams University

Prof. Abdou Mohamed Abdallah Darwish

Prof. and head of the Plastic & Reconstructive Surgery Depart.
Faculty of Medicine - Minia University

Dr. Ahmed Mahrous Mohamed

Ass. Prof. of Maxillofacial & Plastic Surgery Faculty of Medicine - Minia University

Dr. Hossam Mohamed Abo El-Atta

Ass. Prof. of Plastic & Reconstructive Surgery Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2013

سورة البقرة الآية: ٣٢

List of contents

	Page	
List o List o	owledgement	
Introd	luction1	
Aim of the work7		
Revie	w of Literature:	
I.	Anatomy and biomechanics of flexor tendons8	
II.	Flexor tendon repair	
III.	ঁRehabilitation after flexor tendon repair78	
IV.	Evaluation of the repair97	
V.	Complications after treatment of flexor tendon injuries	
Mater	rials and methods	
Resul	ts143	
Discu	ssion	
Sumn	nary and conclusion177	
References		
Arabic summary		

Dedication

This work is dedicated to

My Father

My Mother

My Wife

My Daughters

Hala & Farah

for being the light of my life and encourage me all the time to produce this work in this form

All thanks first and last to **Allah**, as we owe him for his great care, support and guidance in every step in our life. Thanks to **Allah** for blessing this thesis until it has reached to its end.

I would like to express my profound gratitude and cardial appreciation to **Prof. Dr. Mostafa Abd El-Rahman Awad** Professor of Plastic and Reconstructive Surgery, Faculty of Medicine, Ain Shams University for the time he spent supervising this thesis and his meticulous observations and directions that were valuable throughout the work.

It is a great pleasure to acknowledge the assistance I have received from **Prof. Dr. Abdou Mohamed Abd Allah Darwish** Professor and head of Plastic and Reconstructive Surgery department, Faculty of Medicine, El-Minia University in preparing this work with his generous help, providing me a lot of encouragement throughout this work.

I wish to express my thanks to **Dr. Ahmed mahrous Mohamed**, Assistant Professor of Maxillofacial and Plastic
Surgery, Faculty of Medicine, Minia University for his
valuable training and great scientific information and time he
afford me.

I am greatly thankful to **Dr**. **Hossam Mohamed Abo El-Atta**, Assistant Professor of Plastic and Reconstructive Surgery, Faculty of Medicine, Ain Shams University for his help and support in this research.

Lastly, my heart thanks to my family and all my colleagues.

List Of Abbreviations

5-FU	5-fluorouracil
A pulley	Anular pulley
b-FGF	Basic fibroblast growth factor
BMP	Bone morphogenetic proteins
C	Cervical
C pulley	Cruciate pulley
DIP joint	Distal inter phalengeal joint
DNA	Deoxyribonucleic acid
FDP	Flexor digitorum profundus
FDS	Flexor digitorum superficialis
FPL	Flexor pollicis longus
ICF	International Classification of Functioning
IGF	Insulin-like growth factor
IP joint	Inter phalangeal joint
MCP joint	Metacarpo phalangeal joint
MSCs	Mesenchymal stem cells
N	Neaten
PA	Palmar aponeurosis
PDGF	Platelet-derived growth factor
PDS	Polydioxanone
PIP joint	Proximal inter phalengeal joint
RAM	Range of motion
T	Thoracic
TGF-b	Transforming growth factor beta
VBP	Vinculum brevis profundus
VBS	Vinculum brevis superficialis
VLP	Vinculum longum profundus
VLS	Vinculum longum superficialis
WHO	World health organization

List of Tables

I	Page
Table 1: Immobilization program	81
Table 2: Kleinert program	85
Table 3: Duran program	85
Table 4: Early active motion program	88
Table 5: Methods for assessment of flexor tendon outcome in the fingers in any zone (including zone II)	01
Table 6: Methods for assessment of flexor tendon outcome in the fingers in zone II	02
Table 7: Methods for assessment of flexor tendon outcome in the fingers in zone I	03
Table 8: Methods for assesment of tendon outcome in the thumb10	03
Table 9: Evaluation of result of flexor tendon repair using the Buck- Gramcko II criteria14	40
Table 10: Group (A) breaking forces14	43
Table 11: Group (B) breaking forces14	44
Table 12: Group (C) breaking forces14	44
Table 13: Descriptive statistics for breaking force in the three studied groups	45
Table 14: Comparison between group (A) and group (B) regarding to the breaking force	46
Table 15: Comparison between group (A) and group (C) regarding to the breaking force	47
Table 16: Comparison between group (B) and group (C) regarding to the breaking force14	48

List of Tables (Cont.)

	Page
Table 17: Comparison between the three groups regarding to the breaking force	.149
Table 18: Comparison between the two studied groups regarding to the sex of the patients	. 151
Table 19: Comparison between the two studied groups regarding to the age of the patients	. 152
Table 20: Comparison between the two studied groups regarding to the affected hand (left or right) 153	
Table 21: Comparison between the two studied groups regarding affection of the dominant or non dominant hand	.154
Table 22: Comparison between the two studied groups regarding to the affected finger	.155
Table 23: Comparison between the two studied groups regarding to affected tendons	.156
Table 24: Comparison between the two studied groups regarding to the presence of neurovascular injury or not	.157
Table 25: Patients characteristics	.158
Table 26: Results of repair according to the Buck-Gramco II criteria	. 161
Table 27: Results assessed by Buck-Gramco II criteria	.162
Table 28: Number of grams of sand bags elevated by different fingers of the uninjured hands	.163
Table 29: Active motion against resistance of the repaired fingers	.164

List of Figures

	Page
Figure 1: Muscles of the anterior compartment of the forearm	9
Figure 2: "The superficial, intermediate and deep layers of the front of the forearm	10
Figure 3: Separation of the FDP into radial and ulnar bundles and innervation of the muscle by the ulnar N. and Ant. interosseous branch of the median N	12
Figure 4: The flexor pollicis longus muscle	14
Figure 5: A cross section through the carpel tunnel	15
Figure 6: Zones of flexor tendons	18
Figure 7: Digital Flexor Sheath	21
Figure 8: Pulley system	24
Figure 9: Pulley system during flexion and extension	25
Figure 10: Blood supply of the flexor tendon	30
Figure 11: Exor tendon healing	33
Figure 12: Erling Bunnell	38
Figure 13: Surgical exposure of the flexor tendon sheath	44
Figure 14: Effect of digit posture at time of injury on location of distal cut tendon ends in zone II injuries	46
Figure 15: Retrieval of proximal cut tendon ends	48
Figure 16: Incisions in the in flexor sheath for greater exposure and ease of repair	48
Figure 17: Two-strand repair techniques	53
Figure 18: Multi-strand core suture techniques performed with single-stranded suture	53

		Page
Figure 19:	Multi-strand core suture techniques performed with double stranded suture	54
Figure 20:	The Pennington modified Kessler repairs performed with the coated braided polyester triple-stranded suture and triplestranded bound suture	54
Figure 21:	Schematic drawing of the locking and grasping loops	56
Figure 22:	(a) Tendon partially incised bilaterally creating a flap of tendon; (b) the flap is grasped with forceps, and the core suture is inserted without handling the remaining tendon; (c) core suture completed; and (d) flap of tendon excised	63
Figure 23:	A technique to facilitate symmetrical and a traumatic placement of the core suture during flexor tendon repair	63
Figure 24:	Alternate methods for inserting four-strand modified Kessler core suture	63
Figure 25:	Peripheral suture techniques	65
Figure 26:	Differential gliding exercises	80
Figure 27:	FDP and FDS blocking exercises	80
Figure 28:	Kleinert splint with palmar pulley	84
Figure 29:	Pyramid of progressive force application	90
Figure 30:	Active composite fist	91
Figure 31:	Hook and straight fist	92
Figure 32:	Isolated joint motion	93
Figure 33:	Resistive composite fist	94
Figure 34:	Resistive hook and straight fist	94
Figure 35:	Resistive isolated joint motion	95

		Page
Figure 36:	International Classification of Functioning (ICF) Model applied to tendon repair	99
Figure 37:	Jamar dynamometer	104
Figure 38	: Splints used to manage proximal interphalangeal (PIP) flexion contractures	116
Figure 39	: A digit in which pulley reconstruction necessitated a two-stage revision	121
Figure 40:	A, In normal finger mechanics, interphalangeal (IP) flexion occurs with concomitant lumbrical relaxation. B, In lumbrical plus deformity, extension of the IP joints paradoxically is through the lateral bands once the limit of lumbrical relaxation is reached	124
Figure 41:	Cadaveric hands used in the study	126
Figure 42:	Harvesting the flexor tendon	126
Figure 43:	Modified Kessler suture	127
Figure 44:	Six strand savage repair with epitendinous suture	127
Figure 45:	Tensile strength measuring machine (NEXYGEN LR 5K plus from Lloyd Instruments Ltd)	128
Figure 46:	Tensile strength measuring machine (NEXYGEN LR 5K plus)	129
Figure 47:	Testing the tensile strength of the tendon	129
Figure 48:	Measurment of the tendon segment between the two cuffs	130
Figure 49:	Breaking point of the tendon (maximum load)	130
Figure 50	Disruption of the normal flexion cascade posture of the resting fingers by a single extended finger, in conjunction with an appropriately located wound	132
Figure 51:	Zone (II) FDP injury of the left middle finger	135
Figure 52:	A transverse incision made at the level of the distal palmer crease	135

	Page
Figure 53: Suture used to tie the proximal tendon to the feeding tube	136
Figure 54: The tendon ends were retrieved and the ends transfixed by a needle	136
Figure 55: Tendon repair performed	. 137
Figure 56: Closure of the wound	. 137
Figure 57: A dorsal splint applied, with traction on the repaired finger from the finger tip by an elastic rubber band	. 137
Figure 58: Geniometers	. 139
Figure 59: Sand bags of different weights	. 142
Figure 60: Bags of different sizes for the sand	. 142
Figure 61: Active motion against resistance	142
Figure 62: Comparison between group A and group B regarding to the breaking force	. 146
Figure 63: Comparison between group (A) and group (C) regarding to the breaking force	. 147
Figure 64: Comparison between group (B) and group (C) regarding to the breaking force	. 148
Figure 65: Comparison between the three groups regarding to the breaking force	149
Figure 66: Comparison between the two studied groups regarding to the sex of the patients	. 151
Figure 67: Comparison between the two studied groups regarding to the age of the patients	. 152
Figure 68: Comparison between the two studied groups regarding to affected hand (left or right)	. 153

	Page
Figure 69: Comparison between the two studied groups regarding to affection of the dominant or non dominant hand	. 154
Figure 70: Comparison between the two studied groups regarding to the affected finger	. 155
Figure 71: Comparison between the two studied groups regarding to affected tendons	. 156
Figure 72: Comparison between the two studied groups regarding to the presence of neurovascular injury or not	. 157
Figure 73: Results of repair of complete FDP and variable FDS tendons using the modified Kessler techniques (Group I) and six strand savage (group II)	. 161
Figure 74: Results assessed by Buck-Gramco II criteria	. 162
Figure 75: Number of grams of sand bags elevated by different fingers of the uninjured hands	. 163

INTRODUCTION

The functional biomechanics of the flexor tendons depend on a number of factors, including an intact pulley system, synovial fluid, supple joints, and tendon excursion. An intact pulley system prevents flexor tendon bowstringing. The synovial fluid not only provides nutrients to the tendons but also is a constant source of lubrication, permitting frictionless gliding between the tendons. Adhesions between the tendons and other tissues restrict excursion. Stiff joints limit motion and function despite a normal tendon system (Manske, 2005).

The zone (II) of the flexor tendons lies within the digital fibro-osseous tunnel and has always been difficult to repair satisfactorily because the healing tendon tends to adhere to its fibro-osseous tunnel. It has been termed "no man's land" by Bunnell because of the poor outcome in range of motion following tendon repair (*Chan et al.*, 2006).

The initial strength of the repair depends on the material properties and knot security of the sutures as well as on the holding capacity of the suture grip of the tendon. Postoperatively tenomalacia may develop at the suture-tendon junction decreasing initial repair strength (*McDowell et al.*, 2002).