

(قَالُوا سُبْحَانَكَ لاَ عِلْمَ لَنَا إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ إِلاَّ مَا عَلَّمْتَنَا إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ)

صدق الله العظيم سورة البقرة آية (٣٢)

Impaired Flow-Mediated Dilatation and Risk of Restenosis in Diabetic Patient Undergoing Coronary Stent Implantation

Thesis

Submitted for Partial Fulfillment of the MD Degree
In **Cardiology**

Presented by

Maissa Othman Hammam

(Master Cardiology - El-Azhar University)

Under Supervision of

Prof. Dr. Mohamed Awad Taher

Professor of Cardiology

Faculty of Medicine - Ain Shams University

Prof. Dr. Amr Adel El-Sayed

Professor of Cardiology

Faculty of Medicine - Ain Shams University

Dr. Walid Abdel Azim El-Hamady

Assistant Professor of Cardiology

Faculty of Medicine - Ain Shams University

Dr. Ayman Samir Sadek
Assistant Professor of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2013

ACKNOWLEDGEMENT

Thanks to God first and foremost. I feel always indebted to Allah, the most kind and the most merciful.

I would like to express my gratefulness and respect to **Prof. Dr. Mohamed Awad Taher,** Professor of Cardiology, Faculty of Medicine, Ain Shams University, for his moral and scientific support and for giving me the honor of working under his supervision and valuable guidance.

Special thanks and deepest gratitude to **Prof Dr. Amr**Adel El-Sayed, Professor of Cardiology, Faculty of Medicine, Ain
Shams University, for his constructive and instructive comments
and valuable suggestions. Without his generous help, this work
would not have been accomplished in its present picture.

I would like to express my deepest thanks to **Dr. Walid Abd El Azeem El-Hamaday**, Assistant Professor of Cardiology, Faculty of Medicine, Ain Shams University, for his uninterrupted care and advice, his meticulous supervision, precious remarks and continuous encouragement.

I would like to thank **Dr. Ayman Samir Sadek**, Assistant Professor of Cardiology, Faculty of Medicine, Ain Shams University, for his supervision and encouragement throughout this work.

List of Contents

Title Page			
•	Introduction		
•	Aim of the Work		
•	Review of Literature:		
	Chapter 1:		
	■ Endothelial Function and Dysfunction4		
	Chapter 2:		
	■ Diabetes Mellitus and Instent Restenosis28		
	Chapter 3:		
	■ Instent Restenosis41		
•	Patients and Methods67		
•	Results		
•	Discussion		
•	Limitations of the Study110		
*	Summary		
•	Conclusion		
*	References		
•	Arabic Summary		

List of Table

Table No.	Title	Page
Table (1):	FMD measurements among both groups	77
Table (2):	Comparison of demographic & clinical variables between the two groups	79
Table (3):	Echocardiographic findings among both groups	81
Table (4):	Coronary angiographic data among both groups	83
Table (5):	PCI details in both groups	84
Table (6):	6 months follow up in both groups	85
Table (7):	Comparison between myocardial perfusion scan results among the two groups	87
Table (8):	Follow-up coronary-angiography finding in both groups	88
Table (9):	Demographic variables and ISR	90
Table (10):	FMD and ISR	92
Table (11):	Angiographic data in patients with ISR	93
Table (12):	Clinical outcome data and instent restenosis	94
Table (13):	Results of multivariate logistic regression analysis according to risk of instent restenosis	96

List of Figures

Fig. No.	Title	Page
Figure (1):	Possible outcomes following angioplasty and mechanisms responsible for restenosis	42
Figure (2):	Comparison of demographic & clinical variables between the two groups	80
Figure (3a):	Echocardiographic findings among both groups	81
Figure (3b):	LVEF among both groups	82
Figure (4):	Coronary angiographic data among both groups	83
Figure (5):	6 months follow-up among both groups	86
Figure (6):	Comparison between myocardial perfusion scan results among the two groups	87
Figure (7):	Follow-up coronary-angiography findings in both groups	89
Figure (8):	Demographic variables and ISR	91
Figure (9):	FMD and ISR	92
Figure (10):	PCI and ISR	93
Figure (11):	Clinical outcome and instent restenosis	94
Figure (12):	Results of multivariate logistic regression analysis according to risk of instent restenosis	97

List of Abbreviations

Abbrev. Full Term
ACCAmerican Colleague of Cardiology
ACS Acute coronary syndrome
ADP Adenosine di phosphate
AHA American Heart Association
AMI Acute myocardial infarction
ATP Adenosine tri phosphate
BAD Brachial artery diameter
BMS Bare metal stent
CABG Coronary Artery Bypass Grafting
CAC Coronary artery calcification
CHD Coronary heart disease
CRP
CVS Cerebero-vascular stroke
DES Drug eluting stent
DM Diabetes mellitus
EC Endothelial cell
EDHF Endothelin-Derived Hyperpolarizing factor
EDRF Endothelin derived relaxing factor

List of Abbreviations (Cont.)

Full Term Abbrev. **EEL**.....External elastic laminae. **EES**.....Everolimus eluting stent. **ET.1**.....Endothelin 1 **FBF**.....Forearm blood flow. FFR:..... Fraction flow reserve **FH**..... Family history **FMD** Flow mediated dilatation **HDL**..... High density lipoprotein **HTN**..... Hypertension IEL.....Internal Elastic Laminae **ISR**.....Instent restenosis IVUS...... Intra vascular ultra sound **LAD**.....Left anterior descending artery. **LDL** Low density lipoprotein **LVEF**...... Left ventricular ejection fraction **LVH**.....Left ventricular hypertrophy. **MACEs** Major cardiac adverse events NO...... Nitric oxide

List of Abbreviations (Cont.)

	· ,
Abbrev.	Full Term
NOs	Nitric oxide synthase
NSTEMI	Non ST segment elevation myocardial infarction
oc	Optical coherence tomography
PA1	Plasminogen activator inhibitor
PCI	Percutaneous coronary intervention
PTCA:	Percutaneous transluminal coronary angioplasty
PVD	Peripheral vascular disease
SES	Sirolimus –eluting stent
SICAM-1.	Soluble intercellular adhesion molecule-1
STEMI	ST segment elevation myocardial infarction
SVD	Single vessel disease
TLR	Target lesion revascularization
Тра	tissue plasmin activator
TVR	Target vessel revascularization
UA	Unstable angina
VSMC	Vascular smooth muscle cells

العلاقه بين اعاقه سريان الدم في الشرايين الطرفيه وانسداد الدعامات القلبيه في مرضي الداء السكري

رسالة توطئة للحصول علي درجة الدكتوراه في أمراض القلب

مقدمة من

الطبيبة /مايسه عثمان همام ماجستير امراض القلب والاوعيه الدمويه كليه الطب –جامعه الازهر بنات

تحت إشراف
أستاذ دكتور /محمد عوض طاهر
أستاذ أمراض القلب والأوعية الدموية
كلية طب - جامعة عين شمس
أستاذ دكتور/عمرو عادل السيد
أستاذ أمراض القلب والأوعية الدموية
كلية طب - جامعة عين شمس
دكتور/ وليد عبد العظيم الحمادي
أستاذ م أمراض القلب والأوعية الدموية
دكتور/ايمن سمير صادق
دكتور/ايمن سمير صادق
استاذ م امراض القلب والاوعيه الدمويه

كليه الطب - جامعة عين شمس ٢٠١٣

Introduction

The vascular endothelium performs an array of homeostatic function within normal blood vessels located between the blood lumen and the vascular smooth muscle cells, the endothelium is a monolayer of cells capable of transducing blood-born signals, sensing mechanical forces within the lumen and regulating vascular tone through the production of variety of vasoactive human factors⁽¹⁾.

Vasoactive produces both potent vasodilators such as endothelium derived relaxing factor (EDRF), nitric oxide (NO) and vasoconstrictors such as endothelin 1(ET.1).

Normally, the endothelium promotes vasodilatory functions in response to a variety of systemic, neurohumoral and mechanical stimuli.

In appropriate vasoconstriction characterizes the vascular response in patients with endothelial dysfunction⁽²⁾.

An imbalance among the endothelium-derived counteracting vasoactive factors occurs in vascular segments damaged early in the atherosclerotic process.

Dysfunctional endothelium common in patients with cardiovascular risk factors leads to disturbances in coronary blood flow, promoting myocardial ischemia and accelerating the evolution of atherosclerosis and thrombosis.

Endothelium-dependant vasodilation not only operates in large (conductance) arteries but is also an important mechanism that controls dilation in small (resistant) vessels.

Although atherosclerosis does not directly involve resistant vessels, coronary risk factors markedly impair resistant vessel responses to endothelium dependent vasodilator stimuli⁽²⁾. Endothelial dysfunction in resistance vessels may be an important factor in preventing increase in coronary blood flow during times of augmented of metabolic stress.

Impaired endothelium-dependant dilation of coronary resistant vessels also accounts for some of the cases of syndrome X (patient with normal coronary angiogram-chest pain and evidence of stress induced myocardial ischemia.

Aim of the work

The aim of this study is to assess the relation of flow mediated dilatation impairment and clinical and aniographic outcome in diabetic undergoing elective percutaneous coronary stenting.

Subjects and Methods

The study included 60 diabetic patients coming for elective coronary stenting subdivided into 2 groups .the first one includes 30 patients with impaired flow-mediated dilatation and the second group includes another 30 patients with normal flow-mediated dilatation.

Inclusion Criteria:

Diabetic Patients who symptomatic for myocardial ischemia who undergoing elective percutaneous coronary stenting.

Exclusion Criteria:

- 1-Patients with incomplete revascularization
- 2-Stenosis of saphenous vein graft
- 3-Primary angioplasty for acute myocardial infarction
- 4-Balloon angioplasty without stent deployment.
- 5-Liver disease and renal failure with creatinine ≥3mg/dl
- 6-Non diabetic patients

All patients will be subjected to the following:

1-History taking

The patient is known to be diabetic. the patient was suffered from chronic stable angina (according to Canadian Cardiovascular classification and Braunwald's classification) and angina and ischemia after myocardial infarction.

The clinical history included cardiovascular risk factors (family history for cardio vascular disease, DM, hypercholesterolemia)

2-Complete clinical examination:

- a) General examination: include weight, height, waist circumference, Blood pressure ,pulse(radial, apical& peripheral pulsation)
- b) Local examination: for addation sounds , murmurs and evidence of heart failure .

3-Twelve lead electerocardiogram (ECG):

Looking for ischemic changes in the form of (ST deviation, T wave changes and pathological Q waves) and arrhythmia.

4-Echocardiography:

To assess Left ventricular dimensions ,global systolic function& segmental wall motion abnormalities (SWMA) score for all patients.

5-Laboratory investigations:

Lipid profile (serum triglycerides ,total cholesterol, HDL, LDL level). Blood glucose level, ESR, CRP& renal and liver function.

6- Elective percutaneous coronary angiography (PCI):

Will be introduced under standard technique .In all patients PCI will be performed with conventional technique.