Comparison between Two-port Laparoscopic Cholecystectomy and Four-port Laparoscopic Cholecystectomy

Chesis

Submitted for partial fulfillment of Master degree in General Surgery

By

Mohamed Ahmed Abdelhalim Ahmed

M.B.B.Ch.

Under Supervision of

Prof. Dr. Amr Kamel Elfeky

Professor of General Surgery Faculty of Medicine – Ain Shams University

Prof. Dr. Sameh Bayoumy Elsebaie

Assistant Professor of General Surgery Theodor Bilharz Research Institute [TBRI]

Dr. Mohamed Ahmed Aboul Naga

Lecturer of General Surgery Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2016

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest gratitude and thanks to Prof. Dr. Amr Kamel Elfeky, Professor of General Surgery, Faculty of Medicine – Ain Shams University, for his constructive criticism, unlimited help and giving me the privilege to work under his supervision.

My most sincere gratitude is also extended to **Prof.** Dr. Sameh Bayoumy Elsebaie, Assistant Professor of General Surgery, Theodor Bilharz Research Institute, for his enthusiastic help, continuous supervision, guidance and support throughout this work.

I can't forget to thank with all appreciation Prof. Dr. Mohamed Ahmed Aboul Naga, Lecturer of General Surgery, Faculty of Medicine - Ain Shams University, for the efforts and time he has devoted to accomplish this work.

Last but not least, I can't forget to thank all members of my Family for pushing me forward in every step in the journey of my life.

Candidate

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Anatomy of the Gallbladder	4
Pathophysiology of Biliary System	25
Diagnosis of Gallstones	38
Technique of Cholecystectomy	60
Results	99
Discussion	114
Conclusion	119
Summary	120
References	123
Arabic Summary	

List of Abbreviations

Abbr.	Full-term
ABP	: Acute gallstone (biliary) pancreatitis
AsGS	: Asymptomatic gallstones
CBD	: Common bile duct
CHD	: Common hepatic duct
CT	: Computed tomography
DVT	: Deep vein thrombosis
ERC	: Endoscopic retrograde cholangiography
ERCP	: Endoscopic retrograde cholangiopancreatography
ESR	: European Society of Radiology
EUS	: Endoscopic ultrasonography
LC	: Laparoscopic cholecystectomy
LHD	: Left hepatic duct
MPD	: Main pancreatic duct
MRCP	: magnetic resonance cholangio-pancreatography
MRI	: Magnetic resonance imaging
NOTES	: Natural orifice transluminal endoscopic surgery
OC	: Open cholecystectomy
PM	: Major papilla
PTC	: Percutaneous transhepatic cholangiography
RAD	: Right anterior duct
RHD	: Right hepatic duct
RPD	: Right posterior duct
SD	: Duct of Santorini
TBRI	: Theodor Bilharz Research Institute

List of Tables

Eable No	v. Citle	Page No.
Table (1):	Composition of Human Hepatic Duct	t Bile 27
Table (2):	Age distribution of the patients	100
Table (3):	Sex distribution of the patients	101
Table (4):	BMI of the patients	102
Table (5):	Conversion of cases	103
Table (6):	Operative time in both groups	104
Table (7):	Intraoperative bleeding (> 200 cc blo	od)• 105
Table (8):	Intraoperative biliary injury	105
Table (9):	Intraoperative GB perforation	105
Table (10):	Postoperative bleeding	106
Table (11):	Postoperative bile leakage	107
Table (12):	Postoperative wound infection	107
Table (13):	Postoperative drain	107
Table (14):	Postoperative total leucocytic count of patients.	
Table (15):	Comparison between the both groups according to the mean pain score	
Table (16):	Comparison between the both groups according to the mean IV analgesia requirements in times	
Table (17):	Scar satisfaction parameters: Score (1-10) 111

List of Figures

Figure No.	Citle Page No.
Figure (1):	Progressive stages in the development of the duodenum, liver, extrahepatic biliary system, and pancreas
Figure (2):	Anatomy and relations of gallbladder 8
Figure (3):	Arbitrary divisions of gallbladder9
Figure (4):	Variations in the external morphology of glallbladder
Figure (5):	Variations of the cystic duct anatomy 15
Figure (6):	Relationship of bile ducts, hepatic artery branches, and portal vein branches
Figure (7):	Nerve Supply of biliary system 18
Figure (8):	Define the neck of gallbladder by retracting the infundibulum
Figure (9):	Define gallbladder cystic duct junction 21
Figure (10):	Identify the cystic lymph node in the Calot's triangle
Figure (11):	Display all the structures in the Calot's triangle
Figure (12):	Identify Rouviere's Sulcus before clipping24
Figure (13):	An ultrasonography of the gallbladder 50
Figure (14):	Computed tomography scan of the upper abdomen from a patient with cancer of the distal common bile duct

List of Figures (Cont.)

Figure No.	Citle Page N	o.
Figure (15):	Schematic diagram of percutaneous transhepatic cholangiogram and drainage for obstructing proximal cholangiocarcinoma.	55
Figure (16):	Magnetic resonance cholangio- pancreatography5	56
Figure (17):	Endoscopic retrograde cholangiography 5	58
Figure (18):	Endoscopic ultrasonography showing CBD stone	59
Figure (19):	Position of laparoscopic trocars and instruments during laparoscopic cholecystectomy	78
Figure (20):	Excellent cosmetic results following minilaparoscopic cholecystectomy	34
Figure (21):	Sites of trocars insertion in conventional laparoscopic cholecystectomy	38
Figure (22):	Dissection of Calot's triangle	39
Figure (23):	Clipping of cystic artery and cystic duct 9) 0
Figure (24):	Dissection of gallbladder from liver bed 9) 0
Figure (25):	Extraction of gallbladder through epigastric port	91
Figure (26):	Insertion of first traction suture of the fundus of the gallbladder	92
Figure (27):	Insertion of second traction suture in the infundibulum of the gallbladder) 4

List of Figures (Cont.)

Figure No.	Citle Page No.	
Figure (28):	Clipping of the cystic artery and cystic duct	
Figure (29):	Separation of gallbladder from the liver bed	
Figure (30):	Extraction of the gallbladder from epigastric port	
Figure (31):	Distribution of age in both groups 100	
Figure (32):	Distribution of BMI in both groups 102	
Figure (33):	The rate of conversion of cases in both groups	
Figure (34):	The operative time of the cases in the both group	
Figure (35):	The GB perforation of the cases in the both groups	
Figure (36):	Comparison between the both groups according to postoperative drain	
Figure (37):	Distribution of the total leucocytic count in both groups	
Figure (38):	The mean postoperative pain score in both groups	
Figure (39):	Postoperative I.V. analgesic requirements 110	
Figure (40):	Scar sa tisfaction: Score (1-10)111	
Figure (41):	Visual analogue scale for cosmesis 112	

List of Figures (Cont.)

Figure No.	Citle	Page No.
Figure (42):	The Aesthetic Resu	lts of the 2 ports
Figure (43):	The Aesthetic Resu	lts of the 4 ports

Introduction

Laparoscopic cholecystectomy is considered the 'gold standard' for treatment of cholelithiasis. Short length of hospital stay, immediate regaining of physical activity, low prevalence of postoperative pain, morbidity and mortality, and good cosmetic outcomes contribute to the benefits of laparoscopic cholecystectomy (*Sari et al.*, 2005).

The first laparoscopic cholecystectomy was performed in 1987 by Phillip Mouret and was later established by Dubois and Perissat in 1990. Since then, it has met with widespread acceptance as a standard procedure. Standard laparoscopic Cholecystectomy is performed using four trocars. The fourth (lateral) trocar is used to grasp the fundus of the gallbladder so as to expose Callot's triangle. With increasing surgeon experience, laparoscopic cholecystectomy has undergone many refinements including reduction in port size. Two-ports laparoscopic cholecystectomy has been reported in the international literature to be safe and feasible (*Dubois et al.*, 1990).

The introduction of single-port laparoscopic cholecystectomy (LC) has drawn as much attention and interest as initial introduction of LC (*Hayashi et al.*, 2010). It provides nearly scarless wound. However, it was not proved to have the other potential benefits such as reducing

postoperative pain and return to normal activity (*Strasberg*, 2012).

In 4-port LC, the critical view of safety is best ensured by three instruments, which enable both attainment of sufficient operative vision and bimanual manipulation. However, as the number of incisions for ports increases, the potential risks of portrelated complications also can increase. Furthermore, as patients have growing awareness of the quality of life, there has been an increase in demand for cosmesis (*Sreenivas et al.*, 2014).

Aim of the Work

To compare between two-port and four-port laparoscopic cholecystectomy and to demonstrate whether there are extra benefits with two-port laparoscopic cholecystectomy.

Chapter (1): Anatomy of the Gallbladder

I. Embryology of the Biliary Tract

The hepatobiliary system develops during the second half of the eighth week of the embryonic stage of development, known as the *organogenetic period* (*Moore and Persaud*, 2003). Many of the anatomic variations of the system are the consequences of occurrences during this period. On approximately the 22nd day, a small endodermal thickening, the *hepatic plate*, appears in the endodermal lining of the caudal part of the foregut, adjacent to the transverse septum (*Wind*, 2001). This outgrowth, the hepatic diverticulum, or liver bud, consists of rapidly proliferating cells that penetrate the septum transversum, that is, the mesodermal plate between the pericardial cavity and the stalk of the yolk sac (*Sadler*, 2009).

On the 25th-26th day, the plate begins to proliferate and invaginates into the caudal region of the septum between the right and left venous returns, forming the *hepatic diverticulum* (*liver bud*), The initially bulbous "head" of the larger cranial part of the diverticulum bears the cells that constitute the *primordium of the liver parenchyma*, while its "neck" will elongate to become the *extrahepatic portion of the hepatic duct* (*Moore and Dalley*, 2006).

The smaller caudal part of the hepatic diverticulum, the cystic diverticulum, becomes the *gallbladder*, its "neck" forming the *cystic duct* (*Ross and Pawlina*, 2006).

The cells forming the gallbladder and cystic duct are from histologically distinct populations of endodermal cells (*Wind*, 2001).

The stalk of the hepatic diverticulum, between gut (now differentiating into duodenum) and the cystic diverticulum elongates into the *(common) bile duct*. Variations in the gallbladder and extrahepatic duct arise from developmental anomalies that occur during the 4th week (figure 1) (*Moore and Dalley, 2006*).

During week 6, the extrahepatic ducts recanalize through a process of vacuolation resulting from the degeneration of the occluding cells, starting from the duodenal end. Incomplete recanalization results in a *septated common duct. Ductal atresia*, the most serious affliction of the neonatal biliary system was formerly considered to be a malformation due to a failure to recanalize. However, it is now thought to be a secondary phenomenon, resulting from an inflammatory process that leads to sclerosis of recanalized ducts - most likely a viral infection during late fetal development (*Skandalakis*, *1993*).