DESIGN OF A SIMPLIFIED INSTRUMENTATION TO MEASURE AIR POLLUTION PRODUCED FROM FARM MACHINERY

BY WESSAM SHAWKY ABD EL MOHSEN MOHAMED

B. Sc. Agricultura (Agricultural Engineering), Faculty of Agriculture, Cairo University (1999).

A Thesis Submitted in Partial Fulfillment of
The Requirements for the Master Degree In
Environmental Science

Department of Agricultural Science Institute of Environmental Studies And Research Ain – Shames University, Cairo, Egypt.

APPROVAL SHEET

DESIGN OF A SIMPLIFIED INSTRUMENTATION TO MEASURE AIR POLLUTION PRODUCED FROM FARM MACHINERY

BY

WESSAM SHAWKY ABD EL MOHSEN MOHAMED

B. Sc. Agric. (Agricultural Engineering), Faculty of Agriculture, Cairo University (1999).

This Thesis Towards a Master Degree in Environmental Science Has Been Approved by:

Name Signature 1- Prof. Dr. Ahmed Mohamed Ahmed El-Assal Prof. of Design and Production, Mechanical Engineering, Benha High Institute of Technology, Benha University. 2- Prof. Dr. Hassan Abd El-Razek Abd El-Mawla Prof. of Agricultural Engineering, Head of Agricultural Engineering Department, Faculty of Agriculture (Assut), Al-Azhar University. 3- Prof . Dr . Abd-El-Ghany Mohamed El-Gindy Prof . of Agricultural Engineering. Faculty of Agriculture, Ain Shams University. (Supervisor) 4- Prof . Dr. Magdy Ahmed Baiomy Chief Researcher, Design and Development Department, Agricultural Engineering Research Institute (AEnRI), Agriculture Research Center, Ministry of Agriculture. (Supervisor)

DESIGN OF A SIMPLIFIED INSTRUMENTATION TO MEASURE AIR POLLUTION PRODUCED FROM FARM MACHINERY

BY WESSAM SHAWKY ABD- EL MOHSEN MOHAMED

B. Sc. Agricultural. (Agricultural Engineering), Faculty of Agriculture, Cairo University (1999).

A Thesis Submitted in Partial Fulfillment of the Requirements for the Master Degree In Environmental Science

Department of Agricultural Science Institute of Environmental Studies And Research Ain – Shames University.

Under The Supervision of:

1- Prof . Dr . Abd-El-Ghany Mohamed El-Gindy.

Prof . of Agricultural Engineering, Faculty of Agriculture Ain Shams University and Previous Dean.

2- Prof . Dr. Magdy Mohamed Abdelhameed

Prof. Design and Production, Faculty of Engineering Ain Shams University.

3- Prof . Dr. Magdy Ahmed Baiomy

Chief Researcher, Design and Development Department Agricultural Engineering Research Institute (AEnRI), Agriculture Research Center, Ministry of Agriculture.

CONTENTS

No	Subject	Page No	
1	INTODUCTION	1	
2	REVIEW OF LITERATURE	3	
2-1	Air Pollution	3	
2-2	Aerodynamic of Particles	7	
2-3	Techniques of Air Pollution Measurement	10	
3	MATERIALS AND METHODS	15	
3-1	Materials	15	
3-1-1	Physical and mechanical properties of wheat		
	straw	15	
	a- Wheat straw size	15	
	b- Specific density of wheat straw	15	
	c- Terminal velocity of wheat straw	16	
3-1-2	Design and construction of proposed		
	portable instrument	16	
	1- Main device	19	
	- Straw collection mechanism	19	
	i- Main frame	19	
	ii- Filtration unit	19	
	iii- Suction air unit	22	
	- Sensation system	22	
	i- Weight sensor	22	
	ii- strain gage	23	
	iii- Read and analysis results (PCD device)	25	
	2- Stand device	27	
	i- Telescopic stand	27	
	ii- Stand base	27	
3-1-3	Instruments	27	
	A- PCD-300A sensor interface	28	
	B- Personal dust sampler device	28	
	C- Hygro Thermo Anemometer	30	
	D- Combination contact / Photo Tachometer	30	
	E- Terminal velocity apparatus	30	
	F- Balance scale	31	
	G- Sieves	31	

3-2 3-2-1 3-2-2 3-2-3 3-2-3-1 3-2-3-2	Sizes of wheat straw.3Terminal velocity.3Experiments.3laboratory experiments.3Field experiments.3	31 33 33 34
		34 39
3-2-4		9
4 4-1	Physical and Mechanical Properties of Pollution Straw Particles Which Measured by Design Instrument	12
4-2 4-3	Laboratory Experiments 4	5
4-3 4-3-1	The state of the s	l6
4-3-2	Analysis of The Relationship Between Weight of Chaff on Filter And Weight of	58
4-3-3	Instrument Sensitivity for Measuring Pollution Due to Threshing Operation at	57
4-3-4		68
4-4	Relationship Between Feeding Weight (tan) of Wheat Crop and Quantity of Straw	
4-5	Effect of Air Pollution on Thresher	59 59
5	SUMMARY AND CONCLUSION 7	1
6	REFERENCES	15
7	ARABIC SUMMARY	

LIST OF TABLES

No	Table	Page No.
1	Table (2-1): Ambient air quality limit values as	
2	given by law no.4 of Egypt	5 22
4	device	28 34
5	Table (3-4): Conditions of the measurements during the field experiments to design instrument recorded at the same time of each	0 4
6	experimentTable (4-1): The total area, yield, production of	35
7	wheat crop and wheat straw	43
8	and 100 m distances from thresher machine Table(4-3):Physical and mechanical properties	43
9	for Wheat straw Table (4-4): calibration the design instrument in	44
10	laboratory	45
	different heights	46
11	Table (4-6): The relationship between the weight of pollution particles absorbed by the filter and weight of pollution particles fall on sensor at distance 60m (C) from the machine at	
12	different heights	47

	sensor at distance 60m (A) from the machine at different heights.	48
13	Table (4-8): The relationship between the	70
. •	weight of pollution particles absorbed by the	
	filter and weight of pollution particles fall on	
	sensor at distance 100m (E) from the machine	
	at different heights	49
14	Table (4-9): The relationship between the	
	weight of pollution particles absorbed by the	
	filter and weight of pollution particles fall on	
	sensor at distance 100m (F) from the machine	
	at different heights	50
15	Table (4-10): The relationship between the	
	weight of pollution particles absorbed by the	
	filter and weight of pollution particles fall on	
	sensor at distance 100m (D) from the machine	
	at different heights	51
16	Table (4-11): The relationship between weight	
	of chaff at filter and weight of chaff at sensor at	
	distance 140m from farm machine (at G point)	
4 -	for different heights	52
17	Table (4-12): The relationship between weight	
	of chaff at filter and weight of chaff at sensor at	
	distance 140m from farm machine (at H	53
18	point)for different heights	55
10	of chaff at filter and weight of chaff at sensor at	
	distance 140m from farm machine (at I point) for	
	different heights with wheat crop	54
19	Table (4-14): The relationship between total	0-1
. •	chaff at distances 60m from farm machine at	
	points A, B and C with different heights of the	
	instrument	62
20	Table (4-15):The relationship between total	
	chaff at distances 100m from farm machine at	
	points D, E and F for different heights of	
	instrument	63
21	Table (4-16): The relationship between total	
	chaff at distances 140m from farm machine at	
	points G, H and I for different heights of	
	instrument	63

22	Table (4-17): Distribution of pollution at height	
	0.75m	65
23	Table (4-18): Distribution of pollution at height	0.5
24	2m	65
24	Table (4-19): Distribution of pollution at height 2.5m	66
25	Table (4-20): Distribution of pollution at height	00
	3m	66
26	Table (4-21): The relationship between the weight of pollution particles absorbed by the filter and weight of pollution particles fall on	
27	sensor during the instrument test	68
	machine	70

.

LIST OF FIGURES

No.	Figure				
1	Fig.(3-1): The design of the proposed	No 17			
2	instrumentFig. (3-2): The instrument device to measure air	17			
_	pollution produced from farm machinery	18			
3	Fig.(3-3): Design and construction of the	10			
	instrument	20			
4	Fig. (3-4): The main assembly of new design				
	instrument	21			
5	Fig.(3-5): Sensation system	24			
6	Fig.(3-6): The diagrams of bonding and full-				
	bridge strain gage circuit the flat spring steel				
	sensor	25			
7	Fig. (3-7): Measurement system	26			
8	Fig. (3-8): The diagram of measurement	00			
^	system	26			
9 10	Fig. (3-9): PCD-300A sensor interface	29			
11	Fig. (3-10): The laboratory instrument	32			
11	straw	36			
12	Fig. (3-12)The design of the field experiment	30			
'-	(distribution of instrument) for thresher	37			
13	Fig. (3-13): calibration of new design instrument	•			
	to measure pollution which resulted from wheat				
	threshing machine during field experiment	38			
14	Fig. (3-14): The air pollution from wheat straw				
	and dust during threshing operation	40			
15	Fig. (3-15): The instrument during the wheat				
	straw threshing, (height 0.75m)	41			
16	Fig. (4-1) The relationship between weight of				
	chaff at filter and weight of chaff at sensor at				
	distance 60m from the machine (at B point) for	46			
17	different heights Fig. (4-2) The relationship between weight of	40			
17	chaff at filter and weight of chaff at sensor at				
	distance 60m from the machine (at C point) for				

	different heights	47
18	Fig. (4-3) The relationship between weight of	
	chaff at filter and weight of chaff at sensor at distance 60m from farm machine (at A point) for	
	different heights	48
19	Fig. (4-4): The relationship between weight of	70
.0	chaff at filter and weight of chaff at sensor at	
	distance 100m from farm machine (at E point)	
	for different heights	49
20	Fig. (4-5): The relationship between weight of	
	chaff at filter and weight of chaff at sensor at	
	distance 100m from farm machine (at F point)	
	for different heights	50
21	Fig. (4-6): The relationship between weight of	
	chaff at filter and weight of chaff at sensor at	
	distance 100m from farm machine (at D point)	-4
22	for different heights	51
22	Fig. (4-7): The relationship between weight of chaff at filter and weight of chaff at sensor at	
	distance 140m from farm machine (at G point)	
	for different heights	52
23	Fig. (4-8): The relationship between weight of	0_
	chaff at filter and weight of chaff at sensor at	
	distance 140m from farm machine (at H point)	
	for different heights	53
24	Fig. (4-9): The relationship between weight of	
	chaff at filter and Weight of chaff at sensor at	
	distance 140m from farm machine (at I point) for	
25	different heights	54
25 26	Fig.(4-10): predicted model of the instrument	56
26	Fig.(4-11): The relationship between actual and predicted weight of pollution particles on filter	57
27	Fig.(4-12): Effect of the distances from farm	31
~ 1	machine on the total chaff with different heights	
	of the instrument	64
28	Fig. (4-14): Relationship between feeding	
	weight (tan) of wheat crop and quantity of straw	
	(chaff) which suspended, with different heights	
	of instrument and different distances from farm	
	machine	70

Abstract

Wessam Shawky Abd El-Mohsen. Design of a simplified instrumentation to measure air pollution produced from farm machinery. Unpublished the Master of Environmental Science, Department of Agricultural Science, Ain Shams University, Institute of Environmental Studies and Research (2010).

Air pollution is one of the most important problems around the world. Agricultural activities which related to mechanical operations of crops are a major source of high levels of pollution in rural atmosphere. Fine particles are harmful to human health. Fine particles emission from threshing machine needs to be quantified for many purposes.

The aim of this study is to design a simplified instrumentation to measure air pollution produced from farm machinery. The instrument prototype was designed as a simplified instrument and it was fabricated at the workshop of Agriculture Engineering Research institute (AEnRI).

The instrument consists of two main parts, first: main device which consists of straw collection mechanism (main frame-filtration unite- suction fan unit) and sensation system (spring steel- sensor- PCD device). Second: stand device (telescopic stand- stand base).

Many experiments were run in the laboratory and field to calibrate the new design instrument. The results from laboratory calibration found the relationship between the weight on spring steel sensor (gm) and Read of spring steel sensor by using PCD

device (micro-strain),
$$gm = \frac{1}{60}$$
 Micro-strain.

The experiments in field were run during wheat harvesting season of 2008 in Monofia Governorate, to calibrate and test the instrument. The instrument was fixed at variable heights from the ground surface 0.75, 2, 2.5 and 3m, at different distances far from the machine 60, 100, 140 m to cover an area of 80 m width X140m length. Computer Program was used to analyze data to found the relation between the pollution particles absorbed by the filter (Wf), the weight of pollution particles fall on sensor (Ws), the distance between farm machine and the instrument (d) and the height of the instrument (h) then found total pollution (Wt).

The obtained general regression equation (the instrument software) was $W_{\rm f} = 1.9$ - 0.05 h + 0.002 d + 3.462 $W_{\rm s}$, R^2 = 0.96

This regression equation is limited to the condition of the experiments.

ACKNOWLEDGMENT

First and forever I would thank **ALLAH** for his gracious kindness

I wish to express my deepest appreciation and sincere gratitude to **Prof. Dr. Abd-El-Ghany Mohamed El-Gindy,** Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, for his continuous encouragement valuable consultation, and sincere advice.

Good wishes and gratitude are due to **Prof. Dr. Magdy Mohamed Abdelhameed,** Prof. Design and Production, Faculty of Engineering, Ain Shams University, for his supervision, helpful and guidance.

Deep thanks, great indebtedness and deep gratitude to **Prof. Dr. Magdy Ahmed Baiomy,** Chief Researcher of Agricultural Engineering Research Institute (AEnRI), Agriculture Research Center, Ministry of Agriculture, for suggesting the topic, supervising, and kindly providing all necessary facilities. His planning, continuous quittance, objective criticism, encouragement, valuable directions and careful revision of the thesis are deeply appreciated.

Deep thanks to **Dr. Nahed Khairy Ismail** Senior researcher, of Agr. Eng. Res. Inst. (AEnRI), for her great helpful and support.

And many thanks to **Hala Salah El-Dine** agriculture engineer (AEnRI) for helpful.

Deep thanks and appreciation are expressed to staff members of AEnRI.

Finally, expressing my deep appreciation to my family for continuous encouragement, which enabled me to complete this study.

1- INTRODUCTION

Air pollution is considered the most dangerous pollution to the environment. There are many sources of air pollution such as smoke from industry; vehicles and direct combustion of organic waste materials. Dust and suspended particles are other sources of air pollution. Agriculture operations produce several types of air dust and suspended particles that pollute the environment of the rural areas. Fine dust stays suspended in the air for long time which affects human health, animals, and plants. For humans, it can cause many diseases such as asthma, heart attacks and lung cancer. It can trigger symptoms that include nose, eyes, and throat irritation. Agricultural operations are one of source of air pollution in the rural area, such as harvesting and threshing.

Currently, there are about three millions feds cultivated by wheat which used more than 50,886 of the thresher machines (Ministry of agriculture, 2008). The quantities of dust to surround environment during wheat crops threshing may reach 2905 gm.m²/h when using threshers, and 98 gm.m²/h when using harvesters (Sahar, 2002). The quantities of fine dust inhaled by labor during wheat threshing by different machines and combine respectively, the quantities were recorded from 15:62 gm/m³ (EI Gindy et al., 2001). The world limit for allowed pollution is about 9.2 gm/m³ (NMAOH, 1999).

A simple instrument easy to move (portable) device that can be used at variable elevations from the ground surface can be devoted.