

Ain Shams University Faculty of Pharmacy Department of Microbiology and Immunology

Antagonistic activity of some probiotic candidates against certain human pathogens

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master's Degree

In

Pharmaceutical Sciences

(Microbiology and Immunology)

By

Amira Abdel Daim Ibrahim

Bachelor of Pharmaceutical Sciences, Faculty of Pharmacy, Ain Shams University, 2006

Under Supervision of

Prof. Dr. Nadia Abdel-Halim Hassouna

Professor of Microbiology and Immunology, Faculty of Pharmacy – Ain Shams University

Prof. Dr. Mohamad Seif El Din Ashour

Professor of Microbiology and Immunology and Dean of Faculty of Pharmacy, Modern Sciences and Arts University (MSA)

Dr. Mohamed Mostafa Hafez

Lecturer of Microbiology and Immunology, Faculty of Pharmacy – Ain Shams University

2012

Acknowledgement

I am deeply grateful to Prof. Dr. Nadia Hassouna, Professor of Microbiology and Immunology, Faculty of pharmacy, Ain Shams University, for her valuable scientific supervision, continuous guidance and support as well as her constructive comments.

My deep thanks to Prof. Dr. Mohamed Seif El Dain Ashour, Professor of Microbiology and Immunology and Dean of faculty of pharmacy, MSA University, for his kind supervision, continuous help and support and providing facilities during this work.

I wish to express my thanks to Dr. Mohamed Hafez, Lecturer of Microbiology and Immunology, Faculty of pharmacy, Ain Shams University, for helping in understanding the scientific bases of this practical work

I would like to express my sincere thanks and appreciation to Prof. Dr. Mohammad Mabrouk, Professor and Head of Microbiology and Immunology Department, Faculty of pharmacy, Ain Shams University for his generous help and great efforts in writing and revising this thesis as well as his valuable and constructive comments.

Great thanks to my husband, mother and sisters for their encouragement and support.

I am owed with all of my success to my father because he is the real reason of my achievements.

Amira Abdel Daim

Contents

Title	Page
INTRODUCTION	1
LITERATURE REVIEW	
1. Evolution of probiotic Concept	3
2. Probiotic definition	4
3. Microorganisms used as Probiotics	4
4. Difference between Probiotics, Prebiotics and Synbiotics	5
4.1. Probiotics	5
4.2. Prebiotics	5
4.3. Synbiotics	6
5. Lactic Acid bacteria	7
5.1. Lactobacillus	7
5.1.1. <i>Lactobacillus</i> as a normal flora	7
Intestinal normal flora	7
Vaginal normal flora	9
5.1.2. <i>Lactobacillus</i> in fermented dairy products	9
5.2. Bifidobacteria	10
6. Criteria of Probiotic Selection	11
7. Adaptation factors	12
7.1. Survival in the human GI-tract	12
Acid Tolerance	13
Bile Tolerance	13
7.2. Adherence to epithelial cells	14
7.2.1. Cell Surface Structures of lactobacilli	16
7.2.1. 1.Lipoteichoic acid	16
7.2.1.2. Exopolysaccharides	17
7.2.1.3. Cell Surface Proteins	18
Aggregation promoting factor (APF)	18
Surface layer protein	18
7.2.2. Cell Surface Hydrophobicity	19

Title	Page
8. Safety Assessment of Probiotics	19
8.1. Antibiotic Resistance	20
9. Technological stability	20
10. Health Promoting Effects	21
10.1. Antagonistic Activity of Lactobacillus against different pathogens	22
10.1.1. Role of Lactobacillus in Controlling Genital infection	22
10.1.1.1. Adherence of <i>Lactobacillus</i> and Competitive exclusion of	
pathogens	22
10.1.1.2. Antimicrobial compounds produced by <i>Lactobacillus</i> .	23
Production of lactic acid and Low vaginal pH	23
Production of Hydrogen Peroxide	23
Production of Bacteriocin and Biosurfactant	23
10.1.2. Role of <i>Lactobacillus</i> in Controlling Gastrointestinal infections	23
Role of Lactobacillus in Controlling acute infectious diarrhea	24
Activity against Salmonella	25
Activity against Helicobacter pylori	25
10.1.3. Mechanisms of Lactobacillus Antagonistic Activity against the	
different pathogens	26
10.1.3.1. Interference with pathogen adherence and Invasion	27
10.1.3.2. Antimicrobial Activity	28
Lactic acid	29
H2O2	29
Bacteriocin	29
Other antibacterial components	30
10.1.3.3. Cytoprotective Effect	32
10.2. Hypocholesterolemic effect	33
12. Immunological effects of Lactobacillus	33
12.1. Immunostimulatory effects of probiotics	34
12.1.1. Immunostimulation and protection against infectious diseases	
(intestinal and extraintestinal)	
12.1.2. Immunostimulation and protection against Cancer	35
12.2. Attenuation of Immuno-inflammatory Disorders	
12.2.1. Allergy	36

Title	Page
12.2.2. Inflammatory Bowel Disease	36
MATERIALS AND METHODS	
1. Microorganisms	38
1.1. Lactobacillus isolates (probiotic candidates)	38
1.2. Clinical isolates	38
2. Mammalian Cell line	38
3. Chemicals and reagents	38
3.1. Chemicals	40
3.2. Reagents	41
3.2.1. Kovac`s reagent	41
3.2.2. Oxidase Discs	41
3.2.3. Test Reagent for Voges-Proskaur test	41
3.2.4. Methyl red indicator	41
4. Media	41
4.1. Ready prepared culture media and media ingredients	41
4.2. Acidified MRS	42
4.3. Media for Bile Tolerance Test	42
4.4. Media for Acid Tolerance Test	42
4.5. Coculture growth medium (for Lactobacilli and pathogens)	42
4.6. Sugar fermentation medium	42
4.7. Acetone production medium (For Voges-Proskauer test)	43
4.8. Medium for indole production	43
4.9. Medium for methyl red test	43
4.10. Tissue culture media	43
4.10.1. Basal tissue culture medium (BTC medium)	44
4.10.2. Medium used for maintenance of <i>Vero</i> cells (ATCC Manual)	45
4.10.3. Medium used for propagation and monolayer formation of Vero	
(ATCC Manual)	45
5. Buffers and solutions	46
5.1. Phosphate buffered saline (PBS)	46
5.2. Trypsin solution	46
5.3. MTT solution	46

Title	Page
5.4. Trypan blue stain solution	46
5.5. Preparation of McFarland turbidity standards	46
6. Equipment	47
6. 1. Tissue culture equipment	47
6.2. Bacterial Filters	47
6.3. Gas Generating Kit	47
6.4. BD BBL GasPak Anaerobic System	48
6.5. API 50 CHL system	48
6.6. Microtitre plates	48
6.7. Devices	49
7. Anaerobic growth conditions	49
8. Isolation and identification of Lactobacillus	49
8.1. Isolation of <i>Lactobacillus</i> from dairy products	49
8.2. Isolation of <i>Lactobacillus</i> from infant stools	49
8.2. Recovery of <i>Lactobacillus</i> from starter culture	50
8.3. Identification of the selected colonies	50
8.4.1. Microscopic Examination	50
8.4.2. Catalase test	50
8.4.3. Oxidase test	51
8.4.4. API 50 CHL system	51
8.4.4.1. Preparation of bacterial inoculums	51
8.4.4.2. Procedure	51
8.4.4.3. Interpretation of the obtained results	52
9. Collection of clinical isolates	52
10. Identification of clinical isolates	52
10.1. Morphological characteristics	52
10.2. Growth on selective and/ or diagnostic media	53
10.2.1. Growth on MacConkey agar	53
10.2.2 Growth on EMB agar	53
10.2.3. Growth on XLD agar	53
10.3. Biochemical reactions	53
10.3.1. Oxidase test	53
10.3.2. Urease test	54

Title	Page
10.3.3. Indole production test	54
10.3.4. Methyl red test	54
10.3.5. Voges-Proskauer test (Acetone production test)	54
10.3.6. Citrate utilization test	54
10.3.7. TSI test	55
10.3.8. Glucose fermentation test	55
11. Maintenance of Microorganisms	55
12. Screening the <i>Lactobacillus</i> isolates for their adherence capabilities	55
to mammalian cells	55
12.1. Preparation of bacterial inoculum	55
12.2. Adherence assay	56
13. Testing the survival of Lactobacillus isolates under conditions	
simulating the human GI tract	56
13.1. Preparation of Bacterial inoculums	56
13.2. Acid Tolerance	57
13.3. Bile Tolerance	57
14. Screening the clinical isolates for some virulence determinants	58
14.1. Determination of adherence and Invasion of the clinical isolates	58
14.1.1. Preparation of bacterial inoculum	58
14.1.2. Adherence assay	58
14.1.3. Invasion assay	59
14.2. Determination of cytotoxicity	59
14.2.1. Preparation of bacterial inoculum	59
14.2.2. Cytotoxicity assay using trypan blue	59
14.2.3. Cytotoxicity using MTT	60
15. Determination of the antagonistic effect of tested Lactobacillus	
isolates on some clinical isolates	61
15.1. Antimicrobial Activity against tested clinical isolates	61
15.1.1. Preparation of Cell free culture supernatant (CFCS) of tested	
Lactobacillus isolates	61
15.1.2. Determination of antimicrobial activity	61
15.1.2.1. Determination of antimicrobial activity using radial-diffusion	
assay.	61

Title	Page
15.1.2.2. Determination of antimicrobial activity using microtitre plate	
assay.	62
15.1.3. Characterization of Antimicrobial Activity	62
15.1.3.1. Testing activity due to proteinaous material	63
15.1.3.2. Testing activity due to organic acid(s)	63
15.2. Interference with adherence and Invasion of tested clinical isolates.	63
15.2.1. Preparation of Bacterial inocula for the tested Lactobacilli and	
clinical isolates.	63
15.2.2. Adherence Inhibition Assay	63
15.2.3. Invasion inhibition assay	64
15.3. Interference with growth of tested clinical isolates with pathogen	64
15.4. Protection against cytotoxic effect of tested clinical isolates	65
15.4.1. Preparation of bacterial inocula	65
Preparation of Lactobacillus inoculum	65
Preparation of clinical isolates inoculum	65
15.4.2. Inhibition of clinical isolate cytotoxicity by Lactobacillus using	
trypan blue exclusion assay	65
16. Susceptibility of tested <i>Lactobacillus</i> isolates to some antimicrobial	
agents	66
16.1. Preparation of Antimicrobial Solution	66
16.2. Preparation of Bacterial inoculum	66
16.3. Determination of Minimum inhibitory concentration using	
microdilution Method.	66
17. Determination of oxygen tolerance of tested <i>Lactobacillus</i> isolates	67
17.1. Preparation of Bacterial inoculum	67
17.2. Determination of the growth of tested lactobacilli under aerobic and	
anaerobic conditions	67
RESULTS	
1. Isolation and identification of Lactobacillus	68
2. Collection and identification of clinical isolates	72
3. Studying various probiotic potential parameters of the collected	
Lactobacillus isolates	74

Title	Page
3.1. Adherence of different <i>Lactobacillus</i> isolates to <i>Vero</i> cells	74
3.2. Survival of the tested <i>Lactobacillus</i> isolates under conditions	7 0
simulating GIT. 4. Antagonistic activities of the tested <i>Lactobacillus</i> isolates against	78
selected clinical isolates.	82
4.1. Criteria used for selection of clinical isolates	82
4.1.1. Adherence and Invasion of the tested clinical isolates	82
4.1.2. Cytotoxicity of the tested clinical isolates	84
4.2. Antagonistic activity against the uropathogenic <i>E. coli</i> isolate E4	87
4.2.1. Antimicrobial Activity	87
Characterization of the antimicrobial Activity	89
4.2.2. Interference with E. coli adherence and Invasion	90
4.2.3. Other antagonistic activities of some selected <i>Lactobacillus</i>	
isolates	96
4.2.3.1. Interference with <i>E. coli</i> growth in coculture	97
4.2.3.2. Protective effect against <i>E. coli</i> cytotoxicity	97
4.2.4. Summary of the different antagonistic activities of the seven	
selected <i>Lactobacillus</i> isolates against the uropathogenic <i>E. coli</i> isolate E4	100
4.3. Antagonistic activity against the <i>Salmonella typhi</i> isolate SS6	102
4.2.1. Antimicrobial Activity	102
Characterization of the antimicrobial Activity	103
4.2.2. Interference with <i>Salmonella typhi</i> adherence and Invasion 4.2.3. Other antagonistic activities of some selected <i>Lactobacillus</i>	104
isolates	112
4.2.3.1. Interference with <i>Salmonella typhi</i> growth in coculture	112
4.2.3.2. Protective effect against <i>Salmonella typhi</i> cytotoxicity	113
4.2.4. Summary of the different antagonistic activities of the seven	110
selected Lactobacillus isolates against the Salmonella typhi isolate SS6	115
5. Compromising characters of the selected Lactobacillus	
isolates for their susceptibilities to some antimicrobial agents	
and oxygen tolerance	117
5.1. Susceptibility of the selected <i>Lactobacillus</i> isolates to some	118
antimicrobial agents 5.2. Oxygen tolerance of the selected <i>Lactobacillus</i> isolates.	117 119

Title	Page
DISCUSSION	122
1. Probiotic Potential of the collected <i>Lactobacillus</i> isolates (adaptation	
factors)	122
Adherence	122
Acid and bile tolerance	124
2. Antagonistic activities of the selected Lactobacillus isolates against	
selected uro- and entero-pathogens	127
Activity of Lactobacillus isolates against uro-pathogens	128
Activity of Lactobacillus isolates against entero-pathogens	133
3. Compromising characters of the selected <i>Lactobacillus</i> isolates	140
Susceptibility to some antimicrobial agents	141
Oxygen tolerance	141
SUMMARY	144
REFERENCES	148

List of Tables

Table	Page
Table 1. Microbial species from which strains find application in probiotic products	5
Table 2. Selection criteria for probiotic strains	11
Table 3. Examples of immunostimulatory effects of probiotics observed in healthy human subjects	34
Table 4. Different chemicals used in the present study and their sources	39
Table 5. Identification of the selected <i>Lactobacillus</i> isolates using API CHL 50	69
Table 6. Clinical Sources and identification of the collected clinical isolates	73
Table 7. Adherence capacity of the tested <i>Lactobacillus</i> isolates to <i>Vero</i> cells.	76
Table 8. Survival of <i>Lactobacillus</i> isolates in acidic medium (MRS pH 3)	79
Table 9. Survival of <i>Lactobacillus</i> isolates in presence of 0.3% bile salts at pH 6.2	80
Table 10. The tested <i>Lactobacillus</i> isolates with potential probiotic characteristic	81
Table 11. Categorization of the antimicrobial activity of the tested <i>Lactobacillus</i> isolates against <i>E. coli</i> isolate (E4)	88
Table 12. Interference of <i>Lactobacillus</i> isolates with adherence of <i>E. coli</i> isolate to <i>Vero</i> cells	92
Table 13. Interference of <i>Lactobacillus</i> isolates with invasion of <i>E. coli</i> isolate into <i>Vero</i> cells	95

Table	Page
Table 14. Summary of adherence capacity, antimicrobial activity and interference with <i>E. coli</i> E4 invasion of seven selected <i>Lactobacillus</i> isolates	96
Table 15. Different antagonistic Activities of the seven selected <i>Lactobacillus</i> isolates against the uropathogenic <i>E. coli</i> isolate (E4)	101
Table 16. Categorization of the antimicrobial activity of the tested <i>Lactobacillus</i> isolates against <i>Salmonella typhi</i> isolate (SS6)	103
Table 17. Interference of <i>Lactobacillus</i> isolates with adherence of <i>Salmonella typhi</i> isolate (SS6) to <i>Vero</i> cells	107
Table 18. Interference of <i>Lactobacillus</i> isolates with invasion of <i>Salmonella typhi</i> isolate into <i>Vero</i> cells	110
Table 19. Summary of adherence capacity, acid and bile tolerance, antimicrobial activity and interference with <i>Salmonella typhi</i> (SS6) invasion of twelve selected <i>Lactobacillus</i> isolates	111
Table 20. Different antagonistic Activities of the selected <i>Lactobacillus</i> isolates against <i>Salmonella typhi</i> isolate (SS6).	116
Table 21. MICs of some antimicrobial against Probiotic candidate <i>Lactobacillus</i> isolates	118

List of Figures

Figure	Page
Figure 1. Challenges encountered by lactobacilli during travel through the gastrointestinal tract	13
Figure 2. Cell surface architecture of lactobacilli	17
Figure 3. Mechanisms of probiotics against pathogen infection	26
Figure 4. Scatter plot of Adherence of fifty two <i>Lactobacillus</i> isolates to <i>Vero</i> cells	74
Figure 5. Relative adherence capacity of the tested clinical isolates to <i>Vero</i> cells	83
Figure 6. Relative invasion capabilities of the tested clinical isolates into <i>Vero</i> cells	84
Figure 7. Cytotoxicity of the tested clinical isolates to <i>Vero</i> Cells	86
Figure 8. Scatter plot of the antimicrobial activity of forty six <i>Lactobacillus</i> isolates against the uropathogenic <i>E. coli</i> (E4) as determined by agar diffusion method	87
Figure 9. Effect of trypsin (200 μ g/ml) treatment on the activity profile of CFCS of the 14 <i>Lactobacillus</i> isolates with strong antimicrobial activities against <i>E.coli</i>	89
Figure 10. Adherence profile of <i>E. coli</i> isolate (E4) to <i>Vero</i> cells in the presence of different <i>Lactobacillus</i> isolate	91
Figure 11. Invasion capability of <i>E. coli</i> isolate (E4) to <i>Vero</i> cells in the presence of different <i>Lactobacillus</i> isolate	94
Figure 12. Growth of <i>E. coli</i> isolate (E4) when cocultured with some selected <i>Lactobacillus</i> isolates after 24 h.	97
Figure 13. Cytotoxic effect of <i>E. coli</i> isolate E4 and <i>Lactobacillus</i> isolate C8 on <i>Vero</i> cells	99
Figure 14. Effect of pretreatment of <i>Vero</i> cells with different	100

Figure	Page
Lactobacillus isolates on Cytotoxicity of E. coli isolate E4.	
Figure 15. Scatter plot of the antimicrobial activity of 32 <i>Lactobacillus</i> isolates against <i>Salmonella typhi</i> isolate (SS6) as determined by agar diffusion method	102
Figure 16. Effect of trypsin (200 μg/ml) treatment on the activity profile of CFCS of the 13 <i>Lactobacillus</i> isolates with strong antimicrobial activities against <i>Salmonella typhi</i>	104
Figure 17. Adherence profile of <i>Salmonella typhi</i> isolate (SS6) to <i>Vero</i> cells in the presence of different <i>Lactobacillus</i> isolate	106
Figure 18. Invasion capability of <i>Salmonella typhi</i> isolate (SS6) to <i>Vero</i> cells in the presence of different <i>Lactobacillus</i> isolate	109
Figure 19. Growth of <i>Salmonella typhi</i> (SS6) when cocultured with some selected <i>Lactobacillus</i> isolates after 24 h	112
Figure 20. Effect of Salmonella typhi isolate (SS6) on Vero cells	114
Figure 21. Effect of pretreatment of <i>Vero</i> cells with different <i>Lactobacillus</i> isolates on Cytotoxicity of <i>Salmonella typhi</i> isolate SS6	116
Figure 22. Growth profile of probiotic <i>Lactobacillus</i> candidates (C4 & C7) under aerobic and anaerobic conditions	119
Figure 23. Growth profile of probiotic <i>Lactobacillus</i> candidates (C8 & C9 B2a, B10, B11 & L4) under aerobic and anaerobic conditions	120
Figure 24. Growth profile of probiotic <i>Lactobacillus</i> candidates (L36, L37, L38, L39 & L47) under aerobic and anaerobic conditions	121

List of Abbreviations

Abbreviation	Definition
APF	Aggregation promoting factor
BHI	Brain Heart Infusion broth
BSH	Bile salt hydrolase
CD	Crohn's disease
CFCS	Cell free culture supernatant
DMEM	Dulbecco's Modified Eagle medium
ECM	Extracellular matrix
EMB	Eosin methylene blue
EPSs	Exopolysaccharides
FBS	Fetal bovine Serum
FOS	fructooligosaccharides
GIT	Gastrointestinal tract
GRAS	Generally Regarded As Safe
IBD	Inflammatory bowel disease
LAB	Lactic acid bacteria
LTAs	Lipoteichoic acids
MRS	deMan Rogosa Sharpe
MTT	(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide)
PBS	Phosphate buffered saline
PG	Peptidoglycan
SDPs	Sortase-dependent proteins
S-S agar	Salmonella Shigella agar