Association of Endothelial Nitric Oxide Synthetase (eNOS) gene polymorphism with glaucoma in Egyptian patients (Thesis)

Submitted for the partial fulfillment of M.Sc. Degree in CLINICAL & CHEMICAL PATHOLOGY By

Raghda Abdel-Salam Nagaty

M.B.B.Ch.Cairo University

Under supervision of

Prof. Dr/ Mohamed Shehata Abdalla

Professor of Clinical & Chemical Pathology Faculty of Medicine Cairo University

Prof. Dr/ Azza Khalil Amer

Professor of Clinical & Chemical Pathology Ophthalmology Research Institute Scientific Research Academy

Prof. Dr/ Asmaa Ismail Ahmed

Assistant professor of Clinical & Chemical Pathology
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University **2013**

العلاقه بين تعدد أشكال جين (الإنزيم مخلق أكسيد النيتريك الغشائي) ومرضى المياه الزرقاء في مصر

ر سالة مقدمة توطئة للحصول على درجة الماجستير في الباثو لوجيا الإكلينيكية و الكيميائية

مقدمة من الطبيبه / رغده عبد السلام نجاتي

تحت إشراف

أ.د/ محد شحاته عبدالله

أستاذ الباثولوجيا الإكلينيكية و الكيميائية كلبة الطب حامعة القاهرة

أد/ عزه خليل عامر

أستاذ الباثولوجيا الإكلينيكية و الكيميائية معهد بحوث أمراض العيون أكاديمية البحث العلمي

أ.د/ أسماء إسماعيل أحمد

أستاذ مساعد الباثولوجيا الإكلينيكية و الكيميائية كلية الطب جامعة القاهرة 2013

CONTENTS

	Pag	e
ACKNO	WLEDGMENT	i
ABESTR	RACT	iii
INTRO	DUCTION & AIM OF THE WORK	iv
REVIEV	W OF LITERATURE:	
Chapter	1: Glaucoma	1
I-	A brief introduction about Aqueous humour	1
II-	Definition of glaucoma	3
III-	Incidence of glaucoma	4
IV-	Classification of glaucoma	4
V-	Primary Open Angle Glaucoma	6
VI-	Risk factors of glaucoma	10
VII-	Pathology of glaucoma	16
VIII-	Screening of glaucoma	17
IX-	Diagnosis of glaucoma	17
X -	Management of glaucoma	18
Chapter	2: Nitric oxide	20
I-	Introduction	20
II-	Physiological Actions of Nitric Oxide	25
III-	NO and ocular circulation	32
IV-	Effect of NO on different types of Glaucoma	33

\mathbf{V} -	Nitric Oxide in pathological Disease	34
VI-	Biochemical assay of NO	37
SUBJE	CTS AND METHODS	40
RESUL	TS	50
DISCUS	SSION	65
SUMM	ARY	73
REFER	ENCES	76
ARABI	C SUMMARY	92

List of abbreviations

Abbrev.	Title
7-NI	7-nitroindazole
AACG	Acute angle-closure glaucoma
ACA	anti-cardiolipin antibody
AD	Alzheimer's disease
ADH	anti diuretic hormone
ADMA	asymmetric dimethylarginine
ANP	Atrial Natriuretic Peptide
BH4	tetrahydrobiopterin
CD ratio	cup-to-disc ratio
CHD	chronic heart disease
CYP1B1	Cytochrome P450 1B1
DAN	2, 3-diaminonaphthalene
DM	Diabetes mellitus
DN	diabetic nephropathy
EDHF	endothelium-derived hyperpolarizing factor
EDRF	Endothelial-Derived Relaxing Factor
EDTA	ethylene diamine tetra-acetate
eNOS	Endothelial Nitric oxide synthase
ESR	Electron spin resonance
FAAO	Foundation of the American Academy of
	Ophthalmology
Fe(DETC) ₂	iron diethyl dithiocarbanate
FBG	fasting blood glucose
Hb	hemoglobin
ICE	Iridocorneal endothelial syndrome
IL1a	interleukin 1a
iNOS	inducible NOS
IOP	intraocular pressure
JOAG	juvenile open angle glaucoma
L-NA	NG-nitro-L-arginine
L-NAME	L-NA methylester
L-NIO	N-iminoethyl-L-ornithine
L-NMMA	NG-monomethyl- L-arginine
LTG	low tension glaucoma
μl	Micro liter

List of abbreviations

Mm Hg	Millimeter mercury
MMPs	matrix metalloproteinases
mV	millivolt
MYOC	Myocilin
NADPH	reduced nicotinamide adenine dinucleotide
	phosphate
nNOS	neuronal NOS
NO	Nitric oxide
NOS3	Nitric oxide synthase 3
NTG	Normal-tension glaucoma
NVG	Neovascular glaucoma
ONH	optic nerve head
OPA1	Optic Atrophy 1
OPTN	Optineurin
PACG	Primary angle-closure glaucoma
PCG	primary congenital glaucoma
PDS	Pigment dispersion syndrome
PGI2	prostaglandin I2
PI	peripheral iridotomy
POAG	Primary open-angle glaucoma
PPMD	Posterior polymorphous dystrophy
PCR	Polymerase chain reaction
PXF	Pseudoexfoliation
RGCs	retinal ganglion cells
SAS	Sleep apnea syndrome
TGF	tubuloglomerular feedback
TM	trabecular meshwork
VNTR	variable number tandem repeats

LIST OF FIGURES

Title	Page
Figure 1-1: Route of aqueous humour production and outflow	2
Figure 4-1: Mean age of the two studied groups	51
Figure 4-2: Mean fasting and 2hrs pp blood glucose level of the t	
Figure 4-3: Mean right and left IOP of the two studied groups	52
Figure 4-4: Mean cup to disc ratio of the two studied groups	52
Figure 4-5: Frequency of sex distribution in the two studied groups	53
Figure 4-6: Frequency distribution of eNOS gene polymorphism two studied groups	C
Figure 4-7: Frequency distribution of eNOS genotype (bb) in relatingenotypes among the two studied groups	
Figure 4-8: Frequency distribution of eNOS gene alleles amor studied groups	
Figure 4-9: Frequency distribution of eNOS genotypes among	glaucoma
diabetic and glaucoma non- diabetic natients	56

List of figures

Figure 4-10: Frequency distribution of eNOS genotype (bb) in relation to
other genotypes among glaucoma diabetic and glaucoma non- diabetic
patients 56
Figure 4-11: Frequency distribution of eNOS genotypes among glaucoma
diabetic patients and control diabetics
Figure 4-12: Frequency distribution of eNOS genotype (bb) on relation to
other genotypes among glaucoma diabetics and control diabetics 58
Figure 4-13: Frequency distribution of eNOS genotypes among glaucoma non-
diabetic patients and control non-diabetics
Figure 4-14: Frequency distribution of eNOS genotype (bb) on relation to
other genotypes among glaucoma non-diabetic patients and control non-
diabetics
Figure 4-15: Frequency distribution of eNOS gene alleles among non-diabetic
patients and control non-diabetics
Figure 4-16: Amplification product of the 27-bp insertional variable number
of tandem repeat polymorphism in intron 4 of eNOS

LIST OF TABLES

itle	Page
able 1-1: Types of glaucoma	5
able 1-2: Selected genes associated with glaucoma	14
able 1-3: Summary of risk factors for diagnosis or prograucoma	
able 2-1: Inhibitors of nitric oxide synthase	21
able 2-2: Effect of NO on various aspects of inflammation and rocess	-
able 4-1: Descriptive statistics of demographic, laboratory and invarameters of the two studied groups	C
able 4-2: Correlation between eNOS 27bp VNTR gene polymorp DP, CDR among glaucoma patients	
able 4-3: Correlation between eNOS 27bp VNTR b/b genotype enotypes regarding IOP and CDR among glaucoma patients	
able 4-4: Frequency of sex distribution among the two studied grou	ıps 52
able 4-5: Frequency distribution of eNOS 27bp VNTR gene polynong the two studied groups	_
шин д ин ими эичигч дичрэ	

List of tables

Table 4-6: Odds ratio of eNOS 27bp VNTR genotype (bb) in relation to other
genotypes among the two studied groups
Table 4-7: Frequency distribution of eNOS gene alleles among the two studied
groups
Table 4-8: Frequency distribution of eNOS 27bp VNTR genotypes among
glaucoma diabetic and glaucoma non-diabetic patients 55
Table 4-9: Odds ratio of eNOS 27bp VNTR genotype (bb) in relation to other
genotypes among glaucoma diabetic and glaucoma non-diabetic patients 56
Table 4-10: Frequency distribution of eNOS 27bp VNTR genotypes among
glaucoma diabetic and control diabetic patients 57
Table 4-11: Odds ratio of eNOS 27bp VNTR genotype (bb) in relation to other
genotypes among glaucoma diabetic patients and control diabetics 57
Table 4-12: Frequency distribution of eNOS 27bp VNTR genotypes among
glaucoma non-diabetic patients and control non-diabetics
Table 4-13: Odds ratio of eNOS 27bp VNTR genotype (bb) in relation to other
genotypes among glaucoma non-diabetic patients and control non-
diabetics
Table 4-14: Frequency distribution of eNOS gene alleles among glaucoma
non-diabetic patients and control non-diabetics

Acknowledgment

First of all, I would like to thank "Allah" for his grace and mercy, and for giving me the effort to complete this work.

I would like to express my deep thanks and sincere gratitude to Prof. Dr. Mohamed Mohamed Shehata, Prof. of clinical & chemical pathology, Faculty of medicine, Cairo University. He kindly offered me his valuable meticulous scientific help, precious time, effort and constant support.

My deepest appreciation and thanks are offered to Prof. Dr., Azza Khalil Amer, Prof. of clinical & chemical pathology, Ophthalmology Research Institute, Scientific Research Academy, for her kind supervision, valuable suggestions, advices, and continuous support.

I am heartily thankful to dear Assist. Prof. Dr. **Gihan Abdel-Azim Refaat**, Assist. Prof. of clinical & chemical pathology, Ophthalmology Research Institute, Scientific Research Academy, for her encouragement, guidance and support from the initial to the final level which enabeled me to develop an understanding of the subject.

My sincere thanks to Dr. **Asmaa Ismaeel Ahmed**, lecturer of chemical & clinical pathology, Faculty of medicine, Cairo University, for her valuable advice, and continuous help and supervision.

To glaucoma patients, for whose benefit the present work was conducted, I wish it would help them a step forward.

Finally, I take this opportunity to express my profound gratitude to my beloved parents, my sincere husband for their moral support and patience during completion of this work.

Abstract

Glaucoma is a generic term for an etiologically heterogeneous but clinically similar dysfunction and death of retinal ganglion cells (RGCs) often associated with elevated intra ocular pressure. It is the leading neurodegenerative cause of blindness and the second leading cause of blindness worldwide after cataract.

Primary Open Angle Glaucoma (POAG) is a glaucoma with a visually open anterior chamber angle or drain (by gonioscopy), and without underlying secondary ocular disease. POAG is the most common of the glaucomas, accounting for up to 75% of all glaucoma.

The gene encoding *eNOS* (endothelial Nitric Oxide Synthase) is located on chromosome 7q35-36. It has been established that the VNTR (variable number tandem repeat) in the intron 4 of *eNOS* significantly influences the plasma NO levels. Retinal ganglion cell (RGC) degeneration in the glaucomatous optic nerve head of POAG patients clearly corresponds to excess plasma NO-mediated neurotoxicity.

In the current study, there is no significant association between eNOS 27 bp VNTR polymorphism which located in intron 4 and POAG in the Egyptian patients (p=0.139). However by exclusion of DM from the cases and the controls, we found a significant increase in bb genotype in the control group compared to glaucoma group (p=0.04). Also there was a significant increase in b allele in non diabetic control subjects compared to non diabetic glaucomatous patients (p=0.036).

Introduction & aim of the work

Glaucoma is a multifactor optic neuropathy characterized by apoptotic cell death of the retinal ganglion cells (RGCs) in the optic disc or retinal nerve fiber (*Mckinnon et al., 2008*). This irreversible retinal deterioration results in progressive visual field loss along with decreased contrast and color sensitivity (*Mozaffarieh et al., 2008*). (*Quigley and Broman, 2006*) have estimated that by the year 2010, approximately 60.5 million individuals will be affected by this disease, which causes bilateral blindness, and this number may rise to 79.6 million by the year 2020. Glaucoma is classified as a silent disease because patients usually do not have any signs and symptoms until the end stage, when considerable damage has been done to the eye (*Coleman, 1999; Palimkar et al., 2001*). Increased intraocular pressure (IOP) is an established risk factor of the disease, along with old age, race and refractive error (*Kooner et al., 2008*). In addition to these factors, vascular (*Orzalesi et al., 2007*), immunological (*Bakalash et al., 2002*) and neurotoxic (*Hirooka and Shiraga, 2007*) factors are also believed to cause glaucoma (*Ayub et al., 2010*).

Wiggs, (2007) point to genetics as an additional risk factor for the disease. Different strategies used to understand the genetic risk factors have helped to define the molecular events responsible for some Mendelian forms of the disease. In addition, some of the chromosomal locations of the genes that are likely to be involved in common forms of glaucoma have also been identified (Ayub et al., 2010).

Galassi et al., (2004) have shown that as a result of a variety of physiologic stresses, a highly conserved mechanism of gene regulation is activated. Stress or hypoxia in the tissues stimulates increased synthesis of Nitric oxide (NO), which results in an