

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

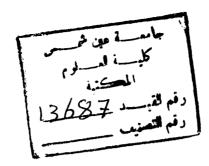
جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن


تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

"Remediation of Water Contamination via Nanomaterials"

A Thesis Submitted by

Amr Ahmed Mahmoud Nada

Master of Science (Chemistry-2011)

A Dissertation Submitted for the Degree of Doctor of Philosophy of Science in Chemistry

To

Department of Chemistry, Faculty of Science,
Ain Shams University

Cairo, Egypt

(2015)

149p

546.22 A.A

"Remediation of Water Contamination via Nanomaterials"

Amr Ahmed Mahmoud Nada

Master of Science (Chemistry 2011) Submitted for the Degree of Doctor of Philosophy of Science in Chemistry

Ph.D. Thesis

Thesis Advisors

Prof. Dr. Saad Abd Elwahab

Dr. Dena Yahea Sabry

Prof. Dr. Yasser Mohamed Moustafa

ASS. Prof. Amal Hamdy aoud-allah

Approved

or saad pena yasser Amal

Head of Chemistry Department

Pflof. Dk / Hamed Younes Derbala

		PAGE
ACKNOWLEDGMENT		
ABSTRACT		
THE AIM OF THE PRESENT WORK		
CHAPTER 1		
INTRODUCTION AND LITERATURE REVIEW		
1.1. Background		1
1.2. What is Photolysis?		5
1.3. Photocatalysis Process		8
1.4. Photocatalytic Metal Oxides		10
1.4.1. Zinc Oxide		12
1.4.2. Titanium Dioxide		14
1.5. Improvement of Photocatalytic Efficiency	by	
Nanostructure Growth Techniques		17
1.6.Practical Application		19
1.6.1. Self-Cleaning Surfaces		20
1.6.2. Remediation of Water		22
1.6.3. Hydrogen Production		24
CHAPTER 2		
EXPERIMENTAL		
2.1. Materials		25

2.2. Preparations	25	
2.2.1. Preparation of TiO ₂ nanoparticles	25	
2.2.2. Preparation of TiO ₂ nanotubes (TNTs)	26	
2.2.3. Preparation of ZnO nanotubes	28	
2.2.4. Preparation of TiO ₂ nanotubes on ZnO		
nanoflower as nanocomposite	28	
2.3. Characterization of prepared samples	30	
2.3.1 High Resolution Transmission Electron		
Microscope (HRTEM)	30	
2.3.2. X-Ray diffraction analysis (XRD)	30	
2.3.3. Fourier transform infrared spectroscopy		
(FT-IR)	31	
2.3.4. Dispersive Raman spectroscopy	31	
2.3.5. Thermal analysis	31	
2.3.6. UV/vis Spectrophotometer	32	
2.3.7. Spectrofluorophotometer	32	
2.4. Determination of Photocatalytic activity	32	
HAPTER 3		
ESULTS AND DISCUSSION		
3.1. Characterization and catalytic activity of prepared		
TiO ₂ nanotubes	34	
3.1.1 Influence of calcination temperature on prepared		
TiO ₂ nanotubes	34	

3.1.1.1. Morphology and structural characterization	34
3.1.1.2. Photocatalytic Activity	45
3.1.2. Influence of washing on prepared TiO ₂ nanotubes	47
3.1.2.1 Morphology and structural characterization 3.1.2.2 Photocatalytic Activity	47 58
3.1.3. Influence of NaOH concentration on prepared TiO ₂	
nanotubes	59
3.1.3.1 Morphology and structural characterization	60
3.1.3.2 Photocatalytic Activity	70
3.1.4. Influence of hydrothermal temperature and	
duration time on prepared TiO2 nanotubes	72
3.1.4.1 Morphology and structural characterization	72
3.1.4.2 Photocatalytic Activity	81
3.2. Characterization and catalytic activity of prepared	
ZnO nanotubes	83
3.2.1. Influence of NaOH concentration on the structure of	
ZnO nanotubes	83
3.2.1.1. Morphology and structural characterization	83
3.2.1.2. Photocatalytic Activity	93
3.2.2. Influence of Hydrazine volume on the structure of ZnO)
nanotubes	94
3.2.2.1. Morphology and structural characterization	94
3.2.2.2. Photocatalytic Activity	102

3.2.3. Influence of reaction temperature on the structu	re
of ZnO nanotubes	103
3.2.3.1. Morphology and structural characterization	
3.2.3.2. Photocatalytic Activity	112
3.2.4. Influence of reaction time on the structure of Zno	0
nanotubes	
3.2.4.1. Morphology and structural characterization	113
3.2.4.2. Photocatalytic Activity	
3.3. Characterization and catalytic activity of prepared	120
ZnO/TiO ₂ nanotubes	101
3.3.1. Morphology and structural characterization	121
3.3.2. Photocatalytic Activity	122
3.4. Phenol Photodegradation Mechanism	128
8-1-4-4-011 IVICCII aliisiii	130
SUMMARY AND CONCLUSIONS	133
EREIVES	138
·	

LIST OF FIGUREURES

LIST OF FIGUREURES

Figure	Description	Page	
Figure (1):	Atmospheric Photolysis		7
Figure (2):	Fundamental Photocatalysis		9
Figure (3):	Self Cleaning Surface		21
Figure (4):	Solar Water Remediation System		
	(Top View)		23
Figure (5):	HRTEM images and electron diffraction patr	terns of	
	prepared TiO ₂ nanoparticles (TNPs) and TiO	\mathbf{O}_2	
	nanotubes (TNTs).		35
Figure (6):	XRD patterns of prepared TiO ₂ nanoparticle	s	
	(TNPs) and TiO ₂ nanotubes (TNTs).		37
Figure (7):	FT-IR spectra of TNPs and TNTs obtained u	ınder	
	different calcination temperature.		39
Figure (8):	Raman spectra of prepared TNP and TNTs		
	obtained under different calcination temperat	ure.	41
Figure (9):	the TG curves of prepared TNPs and TNTs a	t	
	different degrees of calcination temperature.		42
Figure (10):	UV-vis diffuse reflectance spectra of TNP-4	150,	
	TNT-350 and TNT-450.		44
Figure (11):	Photoluminescence (PL) spectra of prepared	TNPs	

LIST OF FIGUREURES

and TNTs at different degrees of calcination temperature.	45
Figure (12): The photocatalytic degradation of aqueous phenol	
over the prepared TNPs and TNTs at different	
degrees of calcination temperature.	47
Figure (13): HRTEM images and electron diffraction	
patterns of prepared TNTs washed with different HC	Cl
concentration.	49
Figure (14): XRD patterns of prepared titanate samples at different	ent
HCl concentration.	52
Figure (15): FT-IR spectra of TNTs washed with different HCl	
concentration.	54
Figure (16): Raman spectra of prepared TNTs Washed at diffe	
HCl conc.	55
Figure (17): UV-vis diffuse reflectance spectra of prepared titana	te
with different HCl concentration.	57
Figure (18): Photoluminescence (PL) spectra of prepared titanate	
different HCl concentration.	58
Figure (19): The photocatalytic degradation of aqueous phenol of	over
the prepared titanate with different HCl concentration	
Figure (20): HRTEM images and electron diffraction patterns of	
prepared TNTs with different NaOH	
concentration.	61
	~ ~