

Approaches toward Enhancement of Avian Influenza H5N1 Vaccine Formulation

Thesis

Submitted for the degree of M.Sc. in Science As a partial fulfillments for requirements of the Master of Science (Biochemistry)

BY

Mona Abd EL Fattah Mohamed Razin

B.Sc. Biochemistry\Chemistry- 2008

Supervisors

Prof. Dr. Ahmed O. Mostafa

Professor of biochemistry Biochemistry department Faculty of Science Ain Shams University

Prof. Dr. Mohamed A. Ali

Professor of virology Water pollution Department National Research Center

Prof. Dr. Amany S. Maghraby

Professor of Immunology and Parasitology Therapeutical Chemistry Department National Research Centre.

> Department of biochemistry Faculty of science Ain shams university

APPROVAL SHEET

Title of Thesis: Approaches toward enhancement of avian influenza H5N1 vaccine formulation

Degree: M.Sc. in Biochemistry.

Name of student: Mona Abd El Fattah Mohamed Razin

This thesis for M.Sc. degree has been approved by

1
2
3
Date of examination: / /2013

بِسْ وِالتَّهِ الرَّهُ زِاليِّدِي وِ

الْهَ الْهَ الْهَ الْهَ الْهُ اللّهُ اللّلْهُ اللّهُ اللّلْهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ الللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ الللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ الللّهُ اللّهُ الللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللّلْمُ اللّهُ اللّهُ الللللّهُ اللّهُ اللّهُ اللّهُ اللّهُ اللللّهُ

صدق الله العظيم

سورة البغرة اية 32

Dedication

To My Family My great father and my Kind mother Thank you for supporting me with kindness patience and love

Abstract

Objective: The puzzling inefficiency of the available anti-highly pathogenic avian influenza (HPIA) vaccines to protect Egyptian poultry against seasonal waves of viral infections was reported. Therefore the ultimate goal of the present work was to try to improve the immune efficacies of two anti-HPAI vaccine preparations by including extracts from two plants from the Egyptian Flora namely Echinacea purpurea or Nigella sativa in their formulations and monitor the effect on mice immune responses. Material and method: two formulations of oil emulsion inactivated vaccines: V1 (mineral oil emulsion inactivated rg (A/chicken/Egypt/Q1995D/2010 (H5N1)) vaccine) and V2 (A/chicken/Egypt/Q1995D/2010 (H5N1)) with Montanide ISA 70 VG) were prepared in combination with either E. purpurea or N. sativa and used to immunize female Swiss albino mice and booster immunization was administered two weeks later. Control groups included mice that received immunization with the unformulated vaccines without the plant extracts and normal group which non immunized with vaccine or plant extract. Sera were collected from various mice groups and studied by enzyme linked immunosorbent assay for IgG and IgM Levels. Moreover, immunophenotyping for CD4⁺ or CD8⁺ T- lymphocytes from mesenteric lymph nodes (MLN) and thymus (T) from vaccinated and control animals was carried out. Results: Two weeks post booster immunization level of IgM (0.54±0.06; fold=6.75) in sera from mice intramuscular immunized with V2 was significantly higher ($P \le 0.001$) than in other mice groups, while, one week post booster immunization, level of IgG (0.77±0.02; fold=10.43) in sera from mice that received formulated V1 with N. sativa was significantly higher ($P \le 0.001$) than in other animals. The ratio of MLN- or T-CD4⁺/CD8⁺ cells was >1 in all mice. Conclusion: Introducing N. sativa to the V1 formulation at concentration (10%)

stimulate mouse immune responses compared to plant extract free vaccine.

Key words: *Highly pathogenic avian influenza, Echinacea purpurea*; *Nigella sativa*; ELISA; lymphocytes.

ACKNOWLEDGEMENT

1 offer my thanks always to **Allah**, for his great care and guidance in every step of my life and for giving me the ability to complete this work.

1 wish to express my sincere thanks, deepest gratitude and appreciation to **Prof. Dr. Ahmed Osman Mostafa**, Professor of Biochemistry, Faculty of Science, Ain shams University, for his generous supervision, great support, helpful advice and patience to produce this work.

1 am greatly indebted and grateful to **Prof. Dr. Amany Sayed Maghraby**, Professor of Immunology and Parasitology, Therapeutical Chemistry Department, National Research Center, for her sincere guidance, valuable discussion, great support, abounding patience, effort and time she spent supporting every step of this work.

My appreciation is expressed to **Prof. Dr. Mohamed Ahmed Ali**, Professor of Virology, Water Pollution Department, National Research Center, for his great support, kind help, strong encouragement and effort reviewing this thesis.

Grateful appreciation is also extended to **Prof. Dr. Mahmoud Mohamed Bahgat,** Professor of Biochemistry, Therapeutical Chemistry
Department, National Research Center, for continuous encouragement, kind help and effort reviewing this thesis.

Special deep appreciation is given to my colleagues in the NRC for their kind help and valuable contribution in this work.

Finally, unlimited cardiac thanks to my beloved family for the great help and encouragement.

Content

Aim of t	ne work	1
Review a	of literature	
I.	Influenza viruses	2
II.	Influenza viruses' classifications and nomenclature	5
A)		5
B)	Virulence based classification	6
,	Genetic based classification	6
D)		7
III.	Protective immune response	9
1.	Humoral immunity	12
2.	Cell-mediated immunity	14
3.	Mucosal immunity	18
IV.	Epidemiology of influenza viruses	19
V.	Protective capacity of available anti-avian influenza	22
	vaccines	
	Types of avian influenza vaccines	23
1.	Vaccines based on influenza virus production	23
2.	Vaccines based on influenza protein expression	27
3.	Subunit vaccines based on in vitro expression of	29
	influenza virus gene(s)	
4.	Vector vaccines based on <i>in vivo</i> expression of	29
	influenza virus gene(s)	
5.	DNA vaccines	32
6.	Influenza vaccines combinations—"prime-boost"	33
	regimens	
VI.	Immunomedulatory of adjuvant product	35
	Echinacea purpurea	35
	Nigella sativa	37
Matovial	ls and methods	
Materia Materia		
Materia I.	Buffers and solutions	41
1.	Coating buffer	41
	Phosphate Buffered Saline.	41
		41
	Washing BufferedBlocking	41
	Substrate Buffer (citrate buffer)	41
	Stop solution	42
II.	Antibodies	42
III.	Reagents	42
IV.	Animals	43
Methods		
I.	Propagation of virus	44
1.	1 Topaganon of virus	77

II.	Preparation of vaccine	
III.	III. Adjuvant from plant origin	
IV.	IV. Formulation of the inactivated virus vaccines from	
	Egyptian isolate with adjuvant from plant origin	
V.	Immunization	45
VI.	Sera separation and lymphoid organs collection	46
VII	I. Enzyme linked Immunosorbent Assay (ELISA) for comparing the efficacy of the studied vaccines	47
VI	II. Immunophenotyping of different lymphocytes populations	47
IX.	Statistical analysis	48
Resul	'ts	
	Evaluation of immune responses according to immunization	protocol
	as compared to control group	
1.	Flu-KEM (commercial)	49
2.	Egy-Flu (commercial)	49
3. V1 (locally prepared with mineral oil)		50
4.	V2 (locally prepared with montanide oil)	51
5. Echinacea purpurea (E3.5 and E7)		56
6. Nigella sativa (N10 and N20)		57
7.	Newly formulated V1 with <i>E. purpurea</i> (V1E3.5 and V1E7)	65
8.	Newly formulated V2 with <i>E. purpurea</i> (V2E3.5 and V2E7)	66
9.	Newly formulated V1 with N. sativa (V1N10 and V1N20)	67
10.	Newly formulated V2 with N. sativa (V2N10 and V2N20)	68
Discu	ssion	. 74
	nary	
Refer	ences	. 88

LIST OF TABLES

<u> Fable</u>	<u>Title</u>	<u>Page</u>
(1)	Immunization.	46
(2)	Folds of IgM levels in sera from mice immunized with different vaccines intra-muscular (IM) or intra-peritoneal (IP) as compared to control group.	54
(3)	Folds of IgG levels in sera from mice immunized with different vaccines intra-muscular (IM) or intra-peritoneal (IP) as compared to control group.	54
(4)	Mean percentage of thymocytes from mice immunized with different vaccines.	55
(5)	Mean percentage of mesenteric lymph node lymphocytes from mice immunized with different vaccines.	55
(6)	Folds of IgM levels in sera from mice injected with Echinacea purpurea or Nigella sativa intra-muscular (IM) or intra-peritoneal (IP) as compared to control group.	58
(7)	Folds of IgG levels in sera from mice injected with Echinacea purpurea or Nigella sativa intra-muscular (IM) or intra-peritoneal (IP) as compared to control group.	59
(8)	Mean percentage of thymocytes from mice injected with <i>E. purpurea</i> or <i>N. sativa</i> .	59
(9)	Mean percentage of mesenteric lymph node lymphocytes from mice injected with <i>E. purpurea</i> or <i>N. sativa</i> .	60

(10)	Folds of IgM levels in sera from mice immunized with new formulated vaccines intra-muscular (IM) or intra-peritoneal (IP) as compared to control group.	70
(11)	Folds of IgG levels in sera from mice immunized with new formulated vaccines intra-muscular (IM) or intra-peritoneal (IP) as compared to control group.	71
(12)	Mean percentage of thymocytes from mice immunized with new formulated vaccines.	72
(13)	Mean percentage of mesenteric lymph node lymphocytes from mice immunized with new formulated vaccines.	73

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	Page
(1)	A schematic diagram of the structure of the influenza A virus particle.	2
(2)	The humoral and cell-mediated immune response to influenza virus infection.	11
(3)	Detection of IgM level (fold) in sera from mice immunized intra-muscular (IM) with Flu-KEM, Egy-Flu, V1 and V2 Post prime and booster doses.	52
(4)	Detection of IgM level (fold) in sera from mice immunized intra-peritoneal (IP) with Flu-KEM, Egy-Flu, V1 and V2 Post prime and booster doses.	52
(5)	Detection of IgG level (fold) in sera from mice immunized intra-muscular (IM) with Flu-KEM, Egy-Flu, V1 and V2 Post prime and booster doses.	53
(6)	Detection of IgG level (fold) in sera from mice immunized intra-peritoneal (IP) with Flu-KEM, Egy-Flu, V1 and V2 Post prime and booster doses.	53
(7)	Detection of IgM level (fold) in sera from mice injected with E3.5 or E7 or immunized with V1, V1E3.5, V1E7, V2, V2E3.5 and V2E7 intra-muscular (IM) Post prime and booster doses.	61
(8)	Detection of IgM level (fold) in sera from mice injected with E3.5 or E7 or immunized with V1, V1E3.5, V1E7, V2, V2E3.5 and V2E7 intra-peritoneal (IP) Post prime and booster doses.	61
(9)	Detection of IgG level (fold) in sera from mice injected with E3.5 or E7 or immunized with V1, V1E3.5, V1E7, V2, V2E3.5 and V2E7 intra-muscular (IM) Post prime and booster doses.	62
(10)	Detection of IgG level (fold) in sera from mice injected with E3.5 or E7 or immunized with V1, V1E3.5, V1E7, V2, V2E3.5 and V2E7 intra-peritoneal (IP) Post prime and booster doses.	62

(11)	Detection of IgM level (fold) in sera from mice injected with N10 or N20 or immunized with V1, V1N10, V1N20, V2, V2N10 and V2N20 intra-muscular (IM) Post prime and booster doses.	63
(12)	Detection of IgM level (fold) in sera from mice injected with N10 or N20 or immunized with V1, V1N10, V1N20, V2, V2N10 and V2N20 intra-peritoneal (IP) Post prime and booster doses.	63
(13)	Detection of IgG level (fold) in sera from mice injected with N10 or N20 or immunized with V1, V1N10, V1N20, V2, V2N10 and V2N20 intra-muscular (IM) Post prime and booster doses.	64
(14)	Detection of IgG level (fold) in sera from mice injected with N10 or N20 or immunized with V1, V1N10, V1N20, V2, V2N10 and V2N20 intra-peritoneal (IP) Post prime and booster doses.	64

List of abbreviations

AGP	Agar Gel Precipitation
AI	Avian influenza
AIVs	Avian influenza viruses
BALT	bronchus-associated lymphoid tissue
CELO	Chicken Embryo Lethal Orphan
CMI	Cell Mediated Immunity
СРЕ	Cytopathic effect
CTL	Cytotoxic T Lymphocytes
ddH ₂ O	Double distilled water
DIVA	differentiation of infected from vaccinated animals
E. angustifolia	Echinacea angustifolia
E. pallida	Echinacea pallida
E. purpurea	Echinacea purpurea
ELISA	Enzyme linked immunosorbent assay
FAO	Food and Agriculture Organization
FCS	Fetal calf serum
FITC	Fluorescene isothiocyanate
FPV	Fowlpox Virus
GALT	gut-associated lymphoid tissue
НА	Haemagglutinin
hAd5	human Adenovirus 5
HALT	head-associated lymphoid tissue
HPAI	Highly pathogenic avian influenza
IFN	Interferon
Igs	immunoglobulins
ILTV	laryngotracheitis herpes virus
IM	Intra-muscular