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Abstract

The evolution of MRI, CT, and PET imaging and the availability of
MDCT and fusion of PET and MDCT data sets as well as the MRI data
sets have lead to gains in detection and characterization of hepatic
lesions. To assess the added value of DW-MRI to PET/CT in the
evaluation of patients with hepatic focal lesions, we included in our study
35 patients referred for assessment of hepatic focal lesions. The 35 patient
underwent '"*F-FDGPET/CT followed by triphasic CT and DW-MRI;
images of both PET/CT and MRI were fused on the work station. A
consultant radiologist and aconsultant nuclear medicine physician
interpreted all the images independently
Keyword: MDCT-MRI- APD-FDG-PET\CT.
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Introduction

Introduction

The liver may host a variety of benign and malignant tumors. The
most common benign tumors found in the liver are cysts, followed by
cavernous hemangiomas. Ninety percent of malignant primary liver tumors
are tumors from epithelial origin: primary hepatocellular carcinoma (HCC).
However metastases to the liver from various primaries occur 20 times
more common than HCC and are often multifocal. Although many tumors
may metastasize to the liver, the most common primaries producing liver

metastases are colorectal, gastric, pancreatic, lung and breast carcinoma.?

Hepatic imaging is essential in the management of patients with
suspected cancer. Computed tomography (CT), ultrasound and magnetic
resonance imaging (MRI) have been used to evaluate these patients. MRI
iIs preferred when further characterization of hepatic focal lesions is

needed.?

MRI is frequently used as a problem-solving technique for the
evaluation of focal hepatic lesions that are deemed indeterminate with
other imaging modalities. Such evaluation can be challenging, particularly
in patients with a history of malignancy or in those with underlying liver
disease, such as cirrhosis, that carry an increased risk for cancer. Although
it has some advantages over CT and ultrasonography, MRI also has some
limitations. MR image quality can be affected by patient motion and most

MR imaging protocols produce lower spatial resolution images than CT.3

The use of positron emission tomography (PET) has been

increasingly recognized as a useful tool in detecting hepatic malignancy
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and this technique is rapidly being superseded by combined 18F-
fluorodeoxyglucose positron emission tomography/computed tomography
(*®F-FDG PET/CT). For overall patient management, ¥F-FDG PET and
PET/ CT have the added advantage over MRI and CT of providing not only
anatomic but also functional information. More recently combined 8F-
fluorodeoxyglucose positron emission tomography/ magnetic resonance
imaging (*®F-FDG PET/MRI) has been introduced. The combination of
functional information derived from 8F-FDG PET with anatomic information
derived from MRI may be of further help in the detection and

characterization of liver lesions.*

For our knowledge this is the first study to evaluate hepatic focal

lesions using combined PET/CT-MRI fusion.
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Aim of the Work

Is to explore the effectiveness and the added clinical value of multi-
modality liver imaging utilizing PET/CT-MRI fusion for the characterization
of focal hepatic lesions compared to PET/CT stand alone and MRI stand

alone.
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Basic Physics

Positron Decay

Positron emission tomography (PET) is a technique that uses
radioactive materials known as radionuclides to obtain images that map out
metabolic activity in the body. Radionuclides are unstable compounds that
decay to more stable compounds by the emission from the nucleus of
radioactivity in the form of either particles, photons of energy, or both. A
PET scanner consists of a set of detectors that surround the object to be
imaged and are designed to convert these high-energy photons into an
electrical signal that can be fed to subsequent electronics. All radioactive
materials decay in an exponential manner with a rate that is characteristic
to a specific type of radionuclide. In a typical PET scan, 106 to 109 events
(decays) will be detected. These events are corrected for a number of
factors and then reconstructed into a tomographic image using
mathematical algorithms. The output of the reconstruction process is a
three-dimensional (3-D) image volume, where the signal intensity in any
particular image voxel is proportional to the amount of the radionuclide
(and, hence, the amount of the labeled molecule to which it is attached) in
that voxel. The radionuclides commonly used in PET scanning are
produced in a device called a cyclotron. A cyclotron accelerates a beam of
charged particles to very high velocity and then directs this beam into a
block of material known as the target. The desired radionuclide can be
produced as a result of the changes that take place in the target material
due to the bombardment by the high-speed charged particles. The

4
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radionuclide produced by the cyclotron can then be attached (labeled) to
compounds that are of biological interest, such as glucose, ammonia, or
water. The radiolabeled complex is usually injected intravenously and will

then distribute throughout the body according to its biological properties.> ©
POSITRON EMISSION AND ANNIHILATION

The nucleus of an atom is composed of two different types of
nucleons, known as protons and neutrons. These particles have similar
masses but differ in that a proton has positive charge, whereas a neutron is
uncharged. A cloud of negatively charged electrons surrounds the

nucleus.’

If a nucleus has either an excess number of protons or neutrons, it is
unstable and prone to radioactive decay, leading to a change in the number
of protons or neutrons in the nucleus and a more stable configuration.
Nuclei that decay in this manner are known as radionuclides.®
Radioisotopes that have an excess of protons may decay by electron
capture or positron decay. Isotopes undergoing electron capture cannot be
imaged with a PET scanner. Decay by positron emission is the basis for
PET imaging.® Examples of positron emitting isotopes used in PET imaging

are shown in Table 1.
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Table.1 Select list of radionuclides that decay by positron emission and are relevant to PET

imaging ®

Radionuclide Half-life EnaxMev) B+ Branching Fraction
nc 20.4 min 0.96 1.00
13N 9.97 min 1.20 1.00
150 122 s 1.73 1.00
18 109.8 min 0.63 0.97
22Na 260y 0.55 0.90
62Cu 9.74 min 2.93 0.97
64Cu 12.7 h 0.65 0.29
68Ga 67.6 min 1.89 0.89
76Br 16.2 h Various 0.56
82Rb 1.27 min 2.60, 3.38 0.96
124) 417 d 1.53, 2.14 0.23

Based on data from Table of Nuclides: www2.bnl.gov/ton (accessed October 17th, 2002}

In order to decay by positron decay, an isotope must have at least
1.02 million electron volts (MeV) more energy than the isotope to which it
decays. Isotopes with transition less than this energy cannot undergo
positron decay and will decay only by electron capture. In positron decay
one of the protons (P+) in the nucleus changes to a neutron (N), and a

positron (8*) and a neutrino (v) are emitted. Positron decay can be written

with the equation: P+ > N+ B" + v+ E

Where P+ is a proton, N is a neutron, B is a positron, v is a neutrino,
and E represents excess energy. A positron is the antiparticle that
corresponds to the electron. A neutrino has very little interaction with
matter, and it can be ignored for positron emission tomography (PET). The
excess energy is shared between the positron and the neutrino with
different amounts of energy going to each particle during decay.® The

energy spectrum of the emitted beta particles is continuous up to a



