

Intravitreal implants for treatment of posterior segment diseases

Essay
Submitted for partial fulfillment of M.Sc. degree in
Ophthalmology

By
Zaid Ali Hassan Al-Sharafi
M.B. B.Ch.
Faculty of medicine
Cairo university

Under supervition of

Dr. Karim Adly Raafat
Professor of ophthalmology
Faculty of medicine
Cairo university

Dr. Mohammed Abdelmonaem Hassaballah Professor of ophthalmology Faculty of medicine Cairo university

> Dr. Nahla Borhan Abuhussein Associate professor of ophthalmology Faculty of medicine Cairo university

> > Faculty of medicine Cairo university 2012

Acknowledgement

I would like to express my deep and sincere gratitude to Pro. Dr. Karim Adly Raafat professor of ophthalmology, faculty of medicine, Cairo university. Also with immense gratitude that I acknowledge the support of Pro. Dr. Mohammed Abdelmonaem Hassaballah professor of ophthalmology, faculty of medicine, Cairo university. Also I would like to express my deep and gratitude assistant Nahla sincere to Pro. Dr. Borhan Abuhusssein, assistant professor of ophthalmology, faculty of medicine, Cairo university without their efforts, supervision, encouragement and guidance this work would not have been possible.

Abstract

AIn the ongoing armamentarium against sight threatening diseases not only the drug composition is a determining factor but also the way of delivery is a crucial point to consider. Novel methods of ophthalmic drug delivery are being developed to facilitate treatment of a variety of eye diseases.

In order to develop novel methods of ophthalmic drug delivery certain aspects should be considered.

The anatomy and the functional physiology of the eye plays an important role in ocular drug delivery and distribution.

The blood ocular barriers affect the extent of drug absorption and distribution intended to be delivered to the posterior segment of the eye.

Key Words:

Cerium oxide - Cytomegalo virus - Inner oBRB.

List of content

iv
vi
vii
1
2
3
6
14
15
22

Chapter three <u>Intravitreal Implants; Types,</u>	
Indications, Advantages and Disadvantages	
Potential sites for intraocular drug delivery device implantation	25
Various approaches employed for ophthalmic drug delivery to overcome the blood ocular barriers	26
Dirct intavitreal injection	26
Intravitreal implantable device technology	28
Types of sustained release drug delivery devices	29
Specialized intravitreal implantable technologies for treatment of posterior segment eye diseases	33
Vitrasert	33
Retisert	37
Illuvien / Medidur	42
Posurdex	46
Scleral plug devices	47
Scleral discoid device	49
Novel helical device (I-Vation technology)	51
Encapsulated cell technology	53
•	

Chapter four other drug delivery systems to posterior	
segment of the eye	
Particulate drug delivery systems	55
Nanoparticles and microparticles	55
Liposomes	57
Cortiject	58
3	30
Physical devices	58
Noninvasive iontophoretic ocular drug delivery device	30
(visulex)	7 0
Micro-electromechanical intraocular drug delivery	58
Device	
	60
Ultrasound mediated microbubble drug delivery	
Curasouna mediated microbubble arag delivery	62
Mi ana a garal ati an af tha garana ah ana idal an a a	
Microcanulation of the suprachoroidal space	63
Summary	66
References	69
Arabic summary	

List of abbreviations

AMD	Age-related macular degeneration
ARPE-19	Activated retinal pigment epithelium
BCVA	Best corrected visual acuity
BM	Bruch's membrane
BRB	Blood retinal barrier
BRVO	Branch retinal vein occlusion
(CeO ₂)	Cerium oxide
CME	Cystoid macular edema
CMT	central macular thickness
CMV	Cytomegalo virus
CNTF	Ciliary neurotrophic factor
CRVO	Central retinal vein occlusion
3D	3 dimensional
DDS	Drug delivery system
DME	Diabetic macular edema
DMSB	Dexamethasone sodium m-sulfobenzoate
DNA	Double stranded nucleic acid
DSMT	donut-shaped minitablet
EBV	Epstein barr virus
ECT	Encapsulated cell technology
EVA	Ethylene vinyl acetate
FAME	Flucinolone acetonide in diabetic macular edema
FDA	Food and drug administration
Fig	Figure

Gd-DTPA	Gadolinium diethylene triamino pentaacetic acid
kda	atomic mass unit
iBRB	Inner oBRB
ILM	internal limiting membrane
IOP	Intraocular pressure
MEMS	microelectromechanical systems
MRI	Magnetic resonance imaging
NY	New York
oBRB	Outer oBRB
PGA	Polyglycolic acid
PLA	Polylactic acid
PLGA	Polylactic co-glycolic acid
PMM 2.1.2	Polymethylidene malonate
PVA	Polyvinyl alchol
REETAC	Intravitreal bioerudivel controlled-release
	triamcilinone microsphere system
RPE	Retinal pigment epithelium
SVH	simulated vitreous humor
TA	Triamcilinone
USA	United States of America
VA	Visual acuity
VEGF	Vascular endothelial growth factor
VZV	Varicella zoster virus

List of tables

Table No.	Description	Page
1	MRI methods for studying ocular drug delivery	15
2	Differences, advantages, and disadvantages of non- invasive ocular drug-delivery studies with MRI and the traditional ocular pharmacokinetic studies with the technique of dissection	21

List of figures

Fig. No	Description	Page
1	Schematic of the eye-ball structure.	3
2	Example of intravitreal drug delivery systems for vitreoretinal diseases. Disorders	5
3	Schematic of corneal structure and its cellular organization of various transport-limiting barriers	7
4	Shematic representations of subconjunctival or episcleral blood vessels, and lymphatics network	8
5	Schematic of blood-retinal barrier, and capillary wall in the retina and the choroid	10
6	In vitro release of Gd-DTPA from episcleral and intravitreal implants	16
7	MRI scan (coronal images) with an intravitreal implant inserted through the equator of the right eye	18
8	(a):Magnified views of the region of the posterior vitreous, retina, choroid, and sclera a histologic section of a normal rabbit eye	19
9	Concentration distribution of Gd-DTPA from the lens to the retina in in vivo MRI experiment	20
10	Concentration distribution of Gd-DTPA along a vertical line from the middle of the vitreous to the other side of the vitreous in in-vivo MRI experimental data	20
11	Geometry of mathematical eye model	22
12	Mathematical eye model study results	23

13	Potential sites for ocular drug delivery device administration	25
14	Vitrasert implant	34
15	retisert implant	38
16	Schematic implantation of retisert implant	41
17	Medidur implant	43
18	 (a) the scleral plug drug delivery device (b) illustration of the device implanted through the scleral in the human eye (c) non-eroding reservoir device allowing for reinjection of depleted bioactive 	48
19	Intrascleral discs	50
20	I-vation technology	51
21	A: I-vation site of implantation B: Cap of I-vation covered by conjunctiva (patient 7 days post implantation)	52
22	Encapsulated Cell Technology	54
23	Scheme of nanoparticles and microparticles	57

24	Visulex (a) A unique dose controller and drug applicator (b) The applicator selectively transports drug ions into the vitreous	59
25	microelectromechanical systems (MEMS) drug delivery device: (a) A cross-section of the micro-electrochemical drug delivery device depicting electrochemical pumping of drug into the eye (b) illustration of the implanted device under the conjunctiva in the anterior chamber of the human eye	61
26	Diagram showing Structure of a microbuble	62
27	Fiberoptic system for microcanulation of suprachoroidal space	65

Introduction

The unique anatomy and physiology of the eye renders it difficult to achieve an effective drug concentration at the target site. Therefore, efficient delivery of a drug past the protective ocular barriers accompanied with minimization of its systemic side effects remains a major challenge (Rupenthal and Alany, 2007).

Diseases affecting the posterior segment of the eye are difficult to treat and take longer to combat by employing conventional topical or systemic drug delivery (Maurice, 2001).

Research has been directed at specialized drug delivery technologies to the tissues of the posterior segment of the eye (Visor, 1994).

Pharmacokinetics describes the quantitative relationship between administered dose and tissue concentration over time, it is an important tool in drug development. To optimize drug concentration at the target sites, pharmacokinetic studies are useful (**Kim et al, 2004**).

Convential techniques as fluorescein, MRI and 3D simulation eye models are methods of assessing ocular drug distribution (Li et al, 2008).

A variety of approaches for drug delivery to the posterior segment of the eye have been explored over the last few decades. These approaches include direct intravitreal injections, drug loaded microparticle carriers as microspheres, nanospheres, and liposomes, transscleral drug delivery devices, and intravitreal devices using polymers (**Davis et al, 2004**). The pharmaceutical world is becoming more and more aware of intraocular drug delivery challenges, and revolutionary therapeutic advances are being invented and implemented which may have the potential to vastly improve patient care and quality of life. Among these most promising developments are intravitreal drug delivery devices designed to deliver drugs with precision directly to the vitreous, retina, and choroid (Ashton et al, 2000).

An intraocular device can be designed as either bioerodable or non-bioerodable (**Choonara et al, 2010**).

With the continued development of more potent drugs combined with research into novel delivery methods, there is a realistic hope that optimal therapeutic drug delivery for diseases of the posterior segment will be available in the near future (Shalin et al, 2010).

Aim of the study:

To spotlights on the types, indications and complications of the intravitreal implants in the posterior segment of the eye and their future trends.

Anatomical and physiological review

The eye-ball is an organ protected from exogenous substances and external stress by various barriers (*Figure 1*), therefore, therapeutic drugs must be transported across several protective barriers regardless of which administration route is utilized, such as eye-drops, subconjunctival, subtenon's, intravitreal injection and/or implant. For the treatment of the anterior segment of the eye (cornea, conjunctiva, sclera and anterior uvea), usually topical ocular eye-drops are used. An eye-drop, irrespective of the instilled volume, often eliminates rapidly within five to six minutes after administration, and only a small amount (1–3%) of an eye-drop actually reaches the intraocular tissue (*Maurice and Mishima*, 1984).

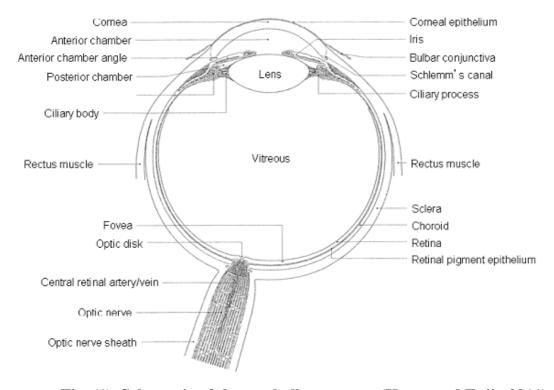


Fig. (1). Schematic of the eye-ball structure. (Kuno and Fuji, 2011).