Coronary Plaque Characterization of Non Significant Lesions Assessed by Analysis of In-Vivo Intracoronary Ultrasound Virtual Histology

Thesis
Submitted for partial fulfillment of Master degree of
Cardiology

By Khaled Aly Abd El Kader Aly M.B., B.Ch. Ain Shams University

Under supervision of

Doctor/ AHMED AHMED KHASHABA

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

Doctor/ AYMAN MORTADA ABDUL MOTELEB

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Doctor/ AHMED MOHAMED EL MAHMOUDY

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2010

List of Contents

	Page
Acknowledgment	
List of abbreviations	ii
List of figures	iii
List of tables	vi
Introduction	1
Aim of the work	3
Review of the literature	4
Coronary plaque development and plaque vulnerabil	lity4
Different imaging modalities of vulnerable plaque	13
Intravascular ultrasound	29
Virtual histology	42
Patients and methods	55
Results	61
Discussion	83
Study limitations	89
Summary	90
Conclusion and recommendations	92
References	93
Appendix	
Arabic summary	

List of Abbreviations

ACS : Acute Coronary Syndrome CAFA : Calcified Fibroatheroma

CATCFA : Calcified Thin Cap Fibroatheroma

DC : Dense Calcium

EBCT : Electron Beam Computed Tomography

EEM : External Elastic Membrane

FA : Fibroatheromas
FC : Fibrocalcific
FF : Fibrofatty
FI : Fibrous
FT : Fibrotic

IDTCFA : IVUS Derived Thin Cap Fibroatheroma

IMT : Intimal Medial ThickeningIVUS : Intravascular Ultrasound

LA : Luminal Area

LAD : Left Anterior Descending

LCX : Left Circumflex

LD MAX : Maximal Luminal Diameter LD MIN : Minimal Luminal Diameter

LM : Left Main

MDCT : Multi Detector Computed Tomography

MLA : Minimal Lumen Area

MRI : Magnetic Resonance Imaging

NC : Necrotic Core NIR : Near Infra Red

OCT : Optical Coherence Tomography PIT : Pathological Intimal Thickening

RCA : Right Coronary Artery RI : Remodeling Index

TCFA : Thin-Cap Fibroatheromas

VH : Virtual Histology

List of Figures

Fig.	Title	Page			
1	Coronary plaque formation				
2	Lesions with thrombi.				
3	Demonstration of spectral findings in the LAD of	16			
	a patient with stable angina pectoris				
4	Complex angiographic morphology as a marker of	18			
	high risk lesions.				
5	This patient was studied with (left) intravascular	23			
	ultrasound virtual histology (IVUS-VH) and				
	palpography (right).				
6	Fibrous coronary artery plaque imaged by OCT.	26			
7	Optical coherence tomography	27			
8	This patient was studied with (left) intravascular	28			
	ultrasound virtual histology (IVUS-VH) and				
	(right) optical coherence tomography (OCT)				
9	Normal anatomy by IVUS.	33			
10	Example of coronary remodeling.	36			
11	Ruptured plaque with positive remodeling.	39			
12	IVUS-VH reconstruction in vivo.	43			
13	Color Map of IVUS-VH and correspondent	44			
	histologic characteristic.				
14	Current coronary plaque classification according	47			
	to virtual histology intravascular ultrasonography.				
15	New vulnerability index	51			
16	Relationship between site of MLD and site of	54			
	plaque rupture				
17	Volcano IVUS-VH s5i.	57			
18	Current coronary plaque classification according	59			
	to virtual histology intravascular ultrasonography.				
19	Percentage of different plaque morphologies.	63			
20	Column chart showing distribution of different	72			
	plague phenotypes in examined vessels				

List of Figures (Cont.)

Fig.	Title		
21	Case (6): Yellow arrow points to the examined	Page 80	
	segment in LCX.		
22	Case (6): VH assessment at MLA	80	
23	Case (9): Yellow arrow points to the examined	81	
	segment in LCX.		
24	Case (9): VH assessment at MLA	81	
25	Case (5):Yellow arrow points to the examined		
	segment in LAD with VH assessment at MLA		

List of Tables

Table	e Title						
1	VH Proposed Plaque Types						
2	Basic characteristics of the whole study population	61					
3	Frequency of examined vessels						
4	Geometrical and compositional data at the MLA site of the whole studied plaques						
5	Age and plaque phenotype						
6	Gender and plaque phenotype	66					
7	Diabetes mellitus and plaque phenotype	67					
8	Hypertension and plaque phenotype	68					
9	Smoking and plaque phenotype						
10	Dyslipidemia and plaque phenotype						
11	Distribution of different plaque phenotypes in examined epicardial vessels						
12	Distribution of different plaque phenotypes in examined segments						
13	Relationship between different plaque types and remodeling index	74					
14	Age and plaque phenotype						
15	Gender and plaque phenotype						
16	Diabetes mellitus and plaque phenotype						
17	Hypertension and plaque phenotype						
18	Smoking and plaque phenotype						
19	Dyslipidemia and plaque phenotype	76					
20	Relation between TCFA and remodeling index	77					
21	Compositional and Geometrical data of TCFA and non-TCFA	78					
22	Relation of indication for angiography (CA) and presence of VH derived TCFA	79					

Coronary Plaque Characterization of Non Significant Lesions Assessed by Analysis of In-Vivo Intracoronary Ultrasound Virtual Histology

Thesis
Submitted for partial fulfillment of Master degree of
Cardiology

By Khaled Aly Abd El Kader Aly M.B., B.Ch. Ain Shams University

Under supervision of

Doctor/ AHMED AHMED KHASHABA

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

Doctor/ AYMAN MORTADA ABDUL MOTELEB

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Doctor/ AHMED MOHAMED EL MAHMOUDY

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2010

Acknowledgement

At first, thanks to Allah for all his gifts.

Words stand short when they come to express my gratefulness to my supervisors.

I would like to express my sincere gratitude to **Dr. Ahmed**Ahmed Khashaba, Assistant Professor of Cardiology, Ain Shams

University, for his encouragement, support and kindness which

enable me to produce good valuable work and for his active

guidance and keen supervision which were of great help throughout

this work.

I would like to express my deepest thanks to **Dr. Ayman**Mortada Abdulmoltelb and **Dr. Ahmed Mohamed El Mahmoudy**lecturers of Cardiology, Ain Shams University, for their uninterrupted care and advice and their meticulous supervision.

Khaled Aly Abd el Kader Aly

Introduction

Acute coronary syndrome (ACS) is common initial manifestation of coronary atherosclerosis and most of such events arise from sites with non-flow limiting coronary atherosclerosis[1].

Histopathological studies have suggested that plaque composition is a crucial determinant of the propensity of atherosclerotic lesions to rupture[2].

Coronary artery lesions with a thin fibrous cap and large necrotic core (thin-cap fibroatheromas, TCFA) are characterized by a high risk of rupture and can potentially trigger acute coronary syndrome (ACS) while atherosclerotic lesions with a well preserved fibrous cap (fibroatheromas, FA) are considered to be more stable ones[3].

Detection of these non-obstructive, lipid rich, high-risk plaques may have an important impact on the prevention of acute myocardial infarction and sudden death[2].

Intravascular ultrasound (IVUS) is the golden standard for evaluation of coronary plaque, lumen, and vessel dimensions[4].

Visual interpretation of gray-scale IVUS can identify calcification within plaques; but it cannot reliably differentiate lipid-rich from fibrous plaque[4].

Spectral analysis of IVUS radiofrequency data (IVUS-Virtual histology) demonstrated its potential to assess coronary

Introduction and Aim of The Work

plaque composition objectively and accurately[5], Whether FA or TCFA in vivo[3].

IVUS-VH (Intravascular ultrasound-Virtual histology) uses spectral analysis of IVUS radiofrequency data to build tissue maps that are correlated with a specific spectrum of the radiofrequency signal and assigned color codes (fibrosis (labeled green), fibrofatty (labeled greenish-yellow), necrotic core (labeled red) and calcium (labeled white))[5].

Aim of The Work

This study aims to assess IVUS-VH plaque characteristics of angiographically non-significant lesions in patients with history of ischemic heart disease either with ACS or with stable angina pectoris.

Chapter 1

Coronary Plaque Development and Plaque Vulnerability

Introduction:

Cardiovascular disease is the leading cause of death for both men and women and is predicted to be the leading global killer by 2020[6].

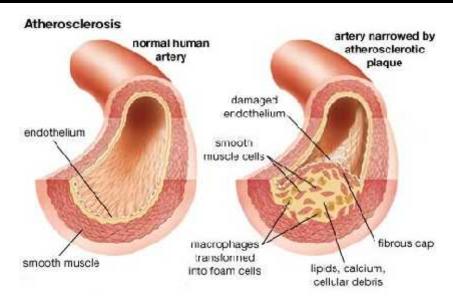
Atherosclerosis is a disease of large and medium-sized muscular arteries and is characterized by endothelial dysfunction, vascular inflammation, and the buildup of lipids, cholesterol, calcium, and cellular debris within the intima of the vessel wall. This buildup results in plaque formation, vascular remodeling, acute and chronic luminal obstruction, abnormalities of blood flow and diminished oxygen supply to target organs [7].

Pathophysiology:

The mechanisms of atherogenesis remain uncertain. The "response-to-injury" theory is the most widely accepted one. Endothelial injury causes vascular inflammation and a fibroproliferative response ensues. Endothelial injury is caused by oxidized low-density lipoprotein (LDL) cholesterol; infectious agents; toxins, including the byproducts of cigarette smoking; hyperglycemia; and hyperhomocystinemia [7].

Then circulating monocytes infiltrate the intima of the vessel wall, and these tissue macrophages act as scavenger

Review of Literature


cells, taking up LDL cholesterol and forming the characteristic foam cell of early atherosclerosis. These activated macrophages produce numerous factors that are injurious to the endothelium [7].

The earliest pathologic lesion of atherosclerosis is the fatty streak. The fatty streak is observed in the aorta and coronary arteries of most individuals by age 20 years. Histologic and intravascular ultrasound studies have shown that coronary lesion development starts relatively early in life [8].

The fatty streak may progress to form a fibrous plaque, the result of progressive lipid accumulation and the migration and proliferation of smooth muscle cells. Platelet-derived growth factor, insulin-like growth factor, transforming growth factors alpha and beta, thrombin, and angiotensin II are potent mitogens that are produced by activated platelets, macrophages, and dysfunctional endothelial cells[7].

These smooth muscle cells are responsible for the deposition of extracellular connective tissue matrix and form a fibrous cap that overlies a core of lipid-laden foam cells, extracellular lipid, and necrotic cellular debris. The developing atherosclerotic plaques acquire their own microvascular network called vasa vasorum, which are prone to hemorrhage and contribute to progression of atherosclerosis[7].

Review of Literature

Figure1: Coronary plaque formation [9].

Fissure or rupture of the fibrous cap is the underlying basis for 70 to 80% of coronary thrombi with extension of the thrombus into the plaque as well as into the lumen, and with propagation of the thrombus upstream from the site of cap rupture[10].

Plaque vulnerability:

Originally proposed by Muller and Tofler in 1992, the term vulnerable plaque (VP) was redefined as any atherosclerotic lesion subsequently resulting in coronary thrombosis [11].

Three forms of vulnerable plaques were described: Thin cap fibroatheroma, erosion, and calcified nodules.

a) Thin cap fibroatheroma

Pathologic studies of plaque rupture with thrombosis suggest that prior to a thrombotic event; a plaque is an