Serum and in situ expression of transforming growth factor *beta* 1 in Psoriasis

Thesis

Submitted for Partial Fulfillment Of MD degree By

Dina M. Kadry Ismail

M.Sc Dermatology & Venereology

Supervised by

Prof. Dr. Hesham A. Zaher

Professor of Dermatology Faculty of Medicine-Cairo University

Dr. Mohamed Hussein Medhat El Komy

Lecturer of Dermatology Faculty of Medicine-Cairo University

Prof. Dr. Olfat G. Shaker

Professor of Biochemistry Faculty of Medicine-Cairo University

> Faculty of Medicine Cairo University 2007

First, thanks to "God"

I would like to express my deepest gratitude and profound thanks to **Prof. Dr. Hesham Zaher**, Professor of Dermatology, Faculty of Medicine, Cairo University, for his most valuable advice, laborious guidance and great help throughout this work.

I am also grateful to **Dr. Mohamed El Komy,** lecturer of Dermatology, Faculty of Medicine, Cairo University, for his sincere help, kind supervision, meticulous guidance and continuous support.

Furthermore, I would like to thank **Prof. Dr. Olfat Shaker**, Professor of Biochemistry, Faculty of Medicine, Cairo University, for her kind help in fulfilling the practical aspect of the study.

I would like also to thank **Dr. Dalia Ahmed,** Lecturer of community, Faculty of Medicine, Cairo University, for her great help and her valuable effort in the statistical analysis of this work.

Finally, I would like to thank all the Staff and Colleagues of Dermatology Department, Cairo University for their help and cooperation.

Psoriasis vulgaris is skin disease characterized a by hyperproliferation of epidermal keratinocytes, capillary elongation, by inflammatory cell infiltrate. accompanied Keratinocytes hyperproliferation could be explained by dysregulation of growth factors controlling epidermal proliferation and by altered metabolism of their receptors in affected skin.

Transforming growth factor beta 1 regulates the proliferation and differentiation of cells, wound healing, and angiogenesis. It is a potent inhibitor of cells as it arrests the cell cycle in the G1 to S phases. It shows a multitude of effects on cellular differentiation and growth.

KEY WORDS: Psoriasis, Transforming growth factor beta 1.

•	INTRODUCTION AND AIM OF WORK
•	REVIEW OF LITERATURE3 * PSORIASIS
	> Introduction
	> Pathogenic mechanisms4
_	Genetic Factors4
-	Triggering Factors and Koebner response6
-	Dermal and Microvascular Factors11
-	Epidermal Hyperproliferation and Altered Differentiation13
	Growth Factors
	Intracellular Mediators
	 Regulatory Enzymes
-	Immune and Inflammatory Factors18
	 Cellular Events
	 Antigen Recognition and T-cell Homing to Skin
	Cytokines
	Chemokines
	 Innate and Adaptive Immunity In Psoriasis
	❖ Transforming Growth Factor Beta 1
	> Introduction38
	> Structure39
	➤ Mode of Action40
	> Function45

Transforming Growth Factor Beta1 and sl	<u>kin</u>
➤ Wound healing	46
> Hypertrophic scars	48
Keloids	48
➤ Scleroderma	49
➤ Fibrotic disorders	49
➤ Pemphigoid	50
➤ Hair	51
➤ Tumorgenesis	51
❖ Transforming Growth Factor Beta	1 and
<u>Psoriasis</u>	
➤ Introduction	55
Effects of Transforming Growth Factor B	eta1 on:
Keratinocytes	57
Angiogenesis	
 T Lymphocytes and Other Inflammate 	•
Cells	59
PATIENTS AND METHODS	61
RESULTS	68
• DISCUSSION	91
SUMMARY and RECOMMENDATION	

•	REFERENCES	′	0	5

• ARABIC SUMMARY

	Figure title	Page
Figure 1	Schematic summary of important events in pathophysiology of psoriasis	28
Figure 2	Mechanism of Signal Transduction Mediated by TGF-ß1	44
Figure 3	Mean serum TGF-β1 among cases and controls.	74
Figure 4	Tissue levels of TGF-β1 among cases and controls.	78
Figure 5	Mean tissue and serum TGF-β1 among cases.	80
Figure 6	Correlation between tissue and serum levels of TGF- $\beta 1$ in patients.	80
Figure 7	Relation between lesional TGF-β1 and PASI score among cases.	82
Figure 8	Correlation between non lesional TGF-β1 and PASI score.	84
Figure 9	Relation between serum TGF-β1 and PASI score among cases.	86
Figure 10	Mean serum, lesional and non lesional TGF-B1 among cases with and without psychic stress.	90

α	alpha
AA	arachidonic acid
α-Ε β7	alpha E Beta 7
ALA	alpha linolenic acid
AP-1	activator protein-1
APC	antigen-presenting cell
β	beta
ВМР	bone morphogenic protein
cAMP	cyclic adenosine monophosphate
c-JNK	c-Jun amino terminal kinase
CLA	cutaneous lymphocyte-associated antigen
CTGF	connective tissue growth factor
CTL	cutaneous T lymphocytes
CTLA4	cytotoxic T lymphocyte antigen 4
DC	dendritic cell
DHA	decosahexaenoic acid
DPC4	deleted in pancreatic carcinoma 4
EGF	epidermal growth factor
EGF-R	epidermal growth factor receptor
ELISA	enzyme linked immunosorbant assay

EPA	eicosapantaenoic acid
Υ	gamma
G1	GAP 1
GM-CSF	granulocyte-macrophage colony-stimulating factor
HB-EGF	heparin binding epidermal growth factor
HERVs	human endogenous retroviruses
HGF	hepatocyte growth factor
HIV	human immunodeficiency virus
HLA	Human leucocyte antigen
H2O2	hydrogen peroxide
HSP	heat shock protein
ICAM	intercellular adhesion molecule
INF	interferon
iNOS	inducible nitric oxide synthase
Ig	immunoglobulin
IL	interleukin
IRF1	interferon regulated factor 1
K	keratin
Kb	kilobase
KC	keratinocyte
Kd	kilodalton
KGF	keratinocyte growth factor
LAK	lymphokine activated killer cell

LAP	latency associated peptide
LDL	low density lipoprotein
LFA	lymphocyte function antigen
LTB4	leukotriene B4
МНС	major histocompatibility complex
MIG	monokine induced by interferon gamma
NFKB	nuclear factor Kappa Beta
NGF	nerve growth factor
NK	natural killer
NO	nitric oxide
ODC	ornithine decarboxylase
PAI-1	plasminogen activator inhibitor-1
PASI	psoriasis area and severity index
PLA2	phospholipase A2
PUFA	polyunsaturated fatty acid
PMN	polymorphonuclear cells
RT-PCR	reverse transcriptase polymerase chain reaction
SCC	squamous cell carcinoma
ScF	scatter factor
SD	standard deviation
Smad	Derived from Sma and MAD gene homologues in
	Caenorhabditis elegans and Drosophila
	melanogaster

S phase	synthesis
sICAM	serum intercellular adhesion molecule
SLeX	sialyl Lewis X
STAT1	Signal transducer and activator of transcription 1
TCR	T cell receptor
TGase K	keratinocyte transglutaminase
TGF-α	transforming growth factor-alpha
TGF-β	transforming growth factor-beta
TGF-β R	transforming growth factor-beta receptor
Th	T-helper
Tie	tyrosine kinase
TLR	Toll like receptor
TNF-α	tumor necrosis factor-alpha
t-PA	Tissue-plasminogen activator
TSP-1	trhombospondin-1
u-PA	Urokinase-plasminogen activator
VC	Verrucous carcinoma
VCAM	vascular cell adhesion molecule
VEGF	Vascular endothelial growth factor
VLA-4	very late antigen-4
VLDL	Very low density lipoprotein

	Table title	page
Table 1	The clinical data and levels of TGF-β1 in serum and tissue of patients	69
Table 2	Summary of the clinical data and levels of TGF- $\beta 1$ in serum and tissue of patients	70
Table 3	The clinical data and levels of TGF-β1 in serum and tissue of controls	71
Table 4	Summary of the clinical data and levels of TGF- $\beta 1$ in serum and tissue of controls	71
Table 5	Comparison of age and sex in studied groups	72
Table 6	Serum levels of TGF-β1 in studied groups	73
Table 7	Tissue levels of TGF-β1 in studied groups	75
Table 8	Correlation between tissue levels of TGF- $\beta1$ in involved skin of patients and tissue levels of TGF- $\beta1$ in non involved skin of patients	76
Table 9	Correlation between tissue levels of TGF- $\beta1$ in involved skin of patients and tissue levels of TGF- $\beta1$ in non involved skin of controls	76

Table 10	Correlation between tissue levels of TGF- $\beta1$ in non involved skin of patients and tissue levels of TGF- $\beta1$ in non involved skin of controls	77
Table 11	Correlation between tissue levels of TGF- $\beta1$ in involved skin and serum levels of TGF- $\beta1$ in patients	79
Table 12	Correlation between tissue levels of non involved skin and serum levels of TGF-β1 in studied groups	79
Table 13	Correlation between tissue levels of TGF-β1 in studied groups in relation to age, disease duration, extent and PASI score	81
Table 14	Correlation between tissue levels of TGF-β1 in non involved skin of studied group in relation to age, disease duration, extent and PASI score	83
Table 15	Correlation between serum levels of TGF-β1 in studied groups in relation to age, disease duration, extent and PASI score	85
Table 16	Tissue and serum levels of TGF-β1 in patients in relation to sex	87
Table 17	Tissue and serum levels of TGF-β1 in relation to psychic stress	89

Psoriasis is derived from the Greek word "psora" meaning "to itch". Although psoriasis was first recognized as a distinct disease as early as 1808, its pathogenic mechanisms have eluded investigators for decades. Recently, it has attracted the attention of molecular genetics having fallen under the somewhat elusive descriptor "complex disease" (Tagami, 1997).

Psoriasis is a common disease with a prevalence up to two percent in the world population (*He et al., 2005*). It is defined as a clinical entity affecting skin, nails, mucous membranes and joints. The usual presentation is that of a sharply demarcated erythematous, hyperkeratotic, and sometimes pustular lesions of varying extent, distributed symmetrically over the skin, however there are many varieties of lesions; different sizes, shapes and patterns. Occasionally, the entire skin can become involved, leading to erythroderma or exfoliative dermatitis (*Bos et al., 1999*).

The pathogenesis of psoriasis is diverse, it includes Cellular alterations in the skin with marked hyperplasia of the epidermis, altered keratinocytes differentiation and angiogenesis. The infiltrate is composed of skin-infiltrating. Cutaneous leukocyte associated antigen (CLA+) memory T cells predominantly showing a T helper (Th1) Phenotype, neutrophils, macrophages, and increased numbers of dentritic cells (*Chamian et al., 2005*).

Transforming growth factor beta (TGF- β) belong to a family of growth factors with inhibitory effects on epithelial cell proliferation as well as immunosuppressive effects. TGF- β s inhibit the growth of many cell types, including keratinocytes (KC) and they stimulate the differentiation of KC in culture. Three isoforms of TGF- β s have been identified in various human tissues: TGF- β 1, TGF- β 2 and TGF- β 3 (*Doi et al., 2003*).

Aim of Work:

The aim of the work was to evaluate the expression of TGF- $\beta1$ in patients with psoriasis in order to define its role in this inflammatory hyperproliferative skin disease.