ICU Management of Critically III Patients Presented with Acute Renal Failure in Association with Systemic Organ Failure

Essay

Submitted for partial fulfillment of the master degree of Intensive care medicine

By: Waleed El Sayed Ali (M. B., B.Ch)

Supervised by:

Prof. Dr. Galal Abo El Seoud

Professor of Anaesthesiology and Intensive Care Medicine Faculty of Medicine - Ain Shams University

Dr. Adel Mikhaeal

Assistant professor of Anaesthesiology and Intensive care Medicine Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013

First and foremost, thanks to Allah for giving me the will and the patience to finish this work.

In a few grateful words, I would like to express my deepest gratitude and appreciation to **Prof. Dr. Galal Abo El Soood**Professor of Anaesthesiology and Intensive Care Medicine Faculty of Medicine, for his great concern and generous help. Without his generous help, this work would not have been accomplished in its present picture.

I am sincerely grateful to **Prof. Dr. Adel Mikhaeal** Assistant professor of Anaesthesiology and Intensive care Medicine, Faculty of Medicine, Ain Shams University, for his kind help and constructive suggestions to achieve this work.

Lastly, there are no words to express my gratitude to my family who charged me with love and encouragement and to all patients and their families for their participation in this study.

Contents

Subjects	Page
➢ List of Abbreviations	I
> List of Tables	VI
➢ List of Figures	VII
™ Introduction and Aim of the Work	1
➤ Renal system (anatomy-pathophysiology)	5
™ Cardio renal syndrome	44
>> Pulmonary renal syndrome	89
> Hepatorenal syndrome	120
> Summary	142
> References	149
> Arabic summary	

List of Abbreviations

ACC : American College of Cardiology

ACE-I : Angiotensin converting enzyme inhibitors

aCL : Anticardiolipin antibodies

ACPAsAnti-citrullinated protein antibodiesACRAmerican College of Rheumatology

ACS : Acute coronary syndrome

ADAMTS13 : A Disintegrin And Metalloproteinase with a

Acute kidney injury network

ThromboSpondin type 1 motif, member13

ADH : Antidiuretic hormone

ADHF
: Acute decompensated heart failure
ADMA
: Asymmetric di-methyl-arginine
AHA
: American Heart Association

AMI : Acute myocardial infarction

ANA : Antinuclear antibody

AKIN

ANP : Atrial natriuretic peptide

AP : Alkaline phosphatase

aPL : Antiphospholipid antibodyAPS : Antiphospholipid syndrome

ARBs : Angiotensin receptor blockers

ARDS : Acute Respiratory Distress Syndrome

ATN : Acute tubular necrosis

AVP : Arginine vasopressin

B2M : Beta-2-microglobulin

BNP : Brain natriuretic peptide

BUN : Blood urea nitrogen

C-ANCA : Cytoplasmic antineutrophil cytoplasmic

antibodies

CCD : Cortical collecting duct

CD : Collecting duct

CHCC : Chapel Hill Consensus Conference

CHFCKDChronic heart failureCKDChronic kidney disease

CK-MB : Creatine kinase MB

COP : Cardiac output

CRS : Cardiorenal syndrome

CSS : Churg–Strauss syndrome

DAH : Diffuse alveolar hemorrhage

DCT : Distal convoluted tubule

DHCC : Dihydroxycholecalciferol

DM : Dermatomyositis

EAD : Extracorporeal Albumin Dialysis

EAV : Effective arterial volume

ECF : Extracellular fluidEMG : Electromyography

eNOS : Endothelial nitric oxide synthase

EPO : Erythropoietin

ERPF : Effective renal plasma flow

ESC : European society of cardiology

FGF23 : Fibroblast growth factor 23

GBM : Glomerular basement membrane GDF-15 : Growth differentiation factor-15

GFR : Glomerular filtration rate

GGT : Gamma-glutamyl transferase

GP-BB : Glycogen phosphorylase isoenzyme

GST : Glutathione S-transferase

H-FABP : Heart-fatty acid binding protein

HRS : Hepatorenal syndrome

HSP : Henoch–Schönlein purpuraHUS : Hemolytic uremic syndrome

IAC : International ascites club

ICF : Intracellular fluidIgAN : IgA NephropathyIL18 : Interleukin-18

IMA : Ischemia modified albumin

INF : Interferon

i Idiopathic thrombocytopenic purpura

KDOQI : Kidney disease outcomes quality initiative

KF : Filtration coefficient

KIM-1Lactate dehydrogenase

L-FABP : Liver fatty acid binding protein

LH : Loop of henle

LPS : Lipopolysaccharide

LV : Left ventricle

MABP : Mean arterial blood pressure

MARS : Molecular Adsorbent Recirculating System

MC : Mixed cryoglobulinaemia

MHC : Major histocompatibility complex

MI : Medullary interstitiumMLC1 : Myosin light chains 1

MMP9 : Matrix metallopeptidase 9

MPA : Microscopic polyangiitis

MPO : Myeloperoxiase

MRProANP : Midregional prohormone of atrial natriuretic

peptide

NAG : N-acetyl- -D-glucosaminidase

NAGL : Neutrophil gelatinase associated lipocalin

NCV : Nerve conduction velocity

NE : Norepinephrine

NFP : Net filtration pressure

NHE3 : Sodium hydrogen exchange 3

NO : Nitric oxide

PAH : Para aminohippuric acid

P-ANCA : Perinuclear antineutrophil cytoplasmic

antibodies

PCO2 : Carbon dioxide tension

PCT : Proximal convoluted tubule

PG : Prostaglandin PM : Polymyositis

PRS : Pulmonary renal syndrome

PTH : Parathyroid hormone RA : Rheumatoid arthritis

RAAS : Renin angiotensin aldosterone system

RBF : Renal blood flow

RBPRetinol binding proteinRCCRenal cell carcinomaRPFRenal plasma flow

RRT : Renal replacement therapy

SBP : Spontaneous bacterial peritonitis

SDMA : Symmetric di-methyl-arginine

SLE : Systemic lupus erythematosus

SNS : Sympathetic nervous system

ST2 : A member of interlukin-1 family

sVEGFR-1 : Soluble fms-like tyrosine kinase receptor-1

Or

SFlt-1 Vascular endothelial growth factor receptor-1

SVR : Systemic vascular resistance

TIPS : Transjugular Intrahepatic Portosystemic Shunt

Tpn : Troponin

TTP : Thrombotic-thrombocytopenic-purpura

VC : Vasoconstriction

VD : Vasodilation

VD Rs : Vitamin D receptors

VEGF : Vascular endothelial growth factor

VIP : Vasoactive intestinal polypeptide

VR : Vasa recta

WG : Wegener's granulomatosis

WRF : Worsening of renal function

GST : -Glutathione S-transferase

1M : Alpha-1 microglobulin

2GPI : 2 glycoprotein-I

List of Tables

Table	Title	Page
1	Hormonal regulation of tubular reabsorption	25
2	Factors affecting Ca++ excretion	28
3	Factors affecting renal tubular H+ secretion	37
	& HCO3- reabsorption	
4	Factors affecting urea & creatine.	41
5	Cockroft Gault equation	41
6	The RIFLE criteria for AKI	43
7	Causes of pulmonary renal syndrome	90
8	HRS characteristics	120
9	Main renal diseases associated with major	127
	liver disase	
10	Systemic processes which can affect both the	127
	liver and the kidney	
11	Diagnostic criteria of HRS according to IAC	128
12	The new diagnostic criteria of HRS	129
13	Median survival in hepatics & HRS patients	131
14	General lines of treatment of HRS type 1	133
15	Advantages of VC. & albumin combination	135
16	Doses of Vasoconstrictor	135
17	General lines of treatment of HRS type 2	141

List of Figures

Fig.	Title	Page
1	Structure of kidney	5
2	Gross picture of kidney	5
3	Functional anatomy of the kidney	8
4	Basic tubular segments of nephron	9
5	The juxtaglomerular apparatus	9
6	glomerular filtration barrier	11
7	Basic kidney processes for urine formation	13
8	Pressures controlling glomerular filtration	14
9	Glomerular dynamics: Effect of RAS	18
10	Autoregulation of RBF & GFR	19
11	Tubular reabsorption in PCT	20
12	Tubular reabsorption in thin descending LH	20
13	Tubular reabsorption in thick ascending LH	21
14	Tubular reabsorption in thick ascending LH	21
15	Tubular secretion in early DCT	21
16	Tubular secretion in early DCT	21
17	Tubular secretion in late DCT & CCD	22
18	Tubular secretion in late DCT & CCD	22
19	Osmoreceptor-ADH feedback mechanism	23
20	Countercurrent multiplier system of LH	24
21	Role of aldosterone in K+ homeostasis	26
22	Effect of Na+ intake on renal K+ excretion	26
23	Role of PTH & Vit. D in plasma calcium	27
	regulation	
24	The tubuloglomerular negative-feedback	29
	mechanism	
25	Factors affecting the thirst sensations	29
26	Components of the RAAS	32

Fig.	Title	Page
27	H+ secretion & HCO3- reabsorption in PCT,	39
	thick ascending LH & early DCT	
28	H+ secretion & HCO3- reabsorption in late	39
	DCT & CD	
29	Phosphate buffering of H+ in tubular cells	39
30	Ammonium buffering of H+ in PCT	39
31	Ammonium buffering of H+ in CD	40
32	Type 1 cardiorenal syndrome	45
33	Biomarkers of cardiorenal syndromes	47
34	Conceptual model of AKI	47
35	New biomarkers of AKI	48
36	Pathophysiology & risk stratification of new	50
	biomarkers	
37	Diagnosis & monitoring of AKI	52
38	Type 2 cardiorenal syndrome	61
39	Clinical conditions associated with elevated	64
	ADMA	
40	Type 3 cardiorenal syndrome	67
41	Pathophysiology & risk stratification of acute	68
	cardiac dysfunction	
42	The type 4 cardiorenal syndrome	81
43	Monoyte in stained smears with large biloated	83
	nucleus	
44	Type 5 cardiorenal syndrome	87
45	Gross section of lung with DAH	89
46	Gross section comparing normal kidney &	89
	rapidly progressive GN	
47	Relative frequencies of conditions contributing	91
	to Pulmonary–renal syndrome in the ICU	

Fig.	Title	Page
48	Illustrative figure of commenest causes of	93
	autoimmune vasculitis	
49	Illustrative figure showing large, medium and	94
	small vessels vasculitis affecting renal	
	circulation	
50	Gross pathology showing consolidated lung	94
	from severe bleeding	
51	Gross pathology of rapidly progressive GN.	94
	compared to normal	
52	Diagnostic process in suspected vasculitis	97
53	Illustrative diagram of normal small B.V.	116
	basement membrane of renal & pulmonary	
	capillaries	
54	Illustrative diagram of cell mediated	117
	inflammatory response of renal & pulmonary	
	capillaries	
55	Pulmonary hemorrhages in a child with	118
	Goodpasture's syndrome	
56	X-ray showing alveolar hemorrhage in	118
	Goodpasture's Syndrome	
57	HRS effects over renal & circulatory systems	120
58	Role of a precipitating factor in HRS	121
59	Pathophysiology of HRS	124
60	Pathogenesis of ascites, RF & hyponatremia in	124
	HRS	
61	Relieving portal hypertension via TIPS	138