

## BIOCONVERSION OF SOME NATURALLY OCCURRING PHENOLIC AND TERPENOID COMPOUNDS

### Thesis Presented By

### **Ehab Ghareeb Mohammed**

Submitted in partial fulfillment of the requirements of the Master Degree in Pharmaceutical Sciences (Pharmacognosy)

**Under The Supervision of** 

### **Prof. Dr. Mohammed Hosny Hussein**

Prof. of Pharmacognosy, Faculty of Pharmacy "Boys" Al-Azhar University, Cairo, Egypt.

#### **Dr. Ehab Mohammed Moustafa**

Lecturer of Pharmacognosy Faculty of Pharmacy "Boys"

**Dr. Mahmoud M. El-aasser**Lecturer of Microbiology,
Regional center of Mycology

Al-Azhar University, Cairo, Egypt.

Al-Azhar University, Cairo, Egypt.

#### Dr. Hassan Abdel Zaher Mohammed

Assoc. Prof. of Natural & Microbial chemistry
National Research Center
Cairo, Egypt.

Department of Pharmacognosy
Faculty of Pharmacy
Al-Azhar University
Cairo, Egypt.
2013

قال الله تعالى:

بسم الله الرحمين الرحيم

﴿ وَعَلَّمَكَ مَا لَمْ تَكُنْ تَعْمُ وَكَانَ قَضَنْ اللَّهِ عَلَيْكَ عَظِيمًا ﴾

حدي الله العظيم (سورة النساء - 113)

Al-Azhar University
Faculty of Pharmacy
Pharmacognosy Department



### **Certificate of Approval**

This is to Certify that Master Thesis of

### **Ehab Ghareeb Mohammed**

Has Been Approved By the Examination Committee

### **Thesis Committee**

Prof. Dr. Hazem Ahmed Kadry

Prof. Dr. Abd El-Naser Badawy Singab

Prof. Dr. Mohammed Hosny Hussein

H. Hosmi

### **ACKNOWLEDGEMENT**

# I acknowledge the sufficient grace of Allah who has sustained me all throughout the difficult moments encountered during this work.

I am sincerely grateful to my supervisor, Prof. Mohammed Hosny, Al-Azhar University, Faculty of Pharmacy, Pharmacognosy Department for his constructive criticism and contributions towards the realization of this researchwork. I am grateful to him for his guidance, advice and patience.

I feel indebted to my supervisors, *Dr. Ehab Mostafa*, Lecturer of Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt, *Dr. Mahmoud M. El-aasser*, Lecturer of Microbiology, Regional center of Mycology, Al-Azhar University and *Dr. Hassan Abdel Zaher*, Assoc. Prof. for his constant guidance, assistance and full support throughout the realization of this thesis.

I very much appreciate the help of *Prof. Kyung-Seon Lee*, Department of Medical Pathology and Laboratory Medicine, University of California Davis, Sacramento 95817, USA, for performing the antioxidant and cytotoxic experiment.

I wish to thank all *staff members, my colleagues* and *technical staff* at the Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University and Regional center of Mycology, Al-Azhar University, for their help. I also would like to thank Dr. Marwa Abd-El-Aziz, Regional center of Mycology, Al-Azhar University for her help.

The most sincere appreciation belongs to my parents for giving me the opportunity to pursue my graduate studies and for their support over the years, and for preparing me for life. They also taught me the importance of making a positive difference in the lives of people.

Finally, to all who have helped in diverse ways I say 'God richly bless you and be with you always'.

**DECLARATION** 

I hereby declare that the thesis entitled:

"BIOCONVERSION OF SOME NATURALLY OCCURRING PHENOLIC AND TERPENOID

COMPOUNDS"

Submitted to Al-Azhar University, Faculty of Pharmacy, Pharmacognosy Department

for

obtaining the degree of Master in Pharmaceutical Sciences (Pharmacognosy) as the result

of the research work carried out by me at laboratories of Pharmacognosy Department,

Faculty of Pharmacy and Regional center of Mycology, Al-Azhar University, Cairo, Egypt

under the guidance of Prof. Mohammed Hosny Hussein, Pharmacognosy Department,

Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt, during the period 2010-2013. I

further declare that the results are not submitted for the award of any other degree or

fellowship.

Pharmacist: Ehab Ghareeb Mohammed

**Assistant Researcher** 

Al-Azhar University,

Faculty of Pharmacy,

Pharmacognosy Department

Cairo, Egypt.

5

### **CERTIFICATE**

I hereby certify that the thesis entitled

### ""BIOCONVERSION OF SOME NATURALLY OCCURRING PHENOLIC AND TERPENOID COMPOUNDS"

Submitted by Pharmacist: Ehab Ghareeb Mohammed for the degree of Master in Pharmaceutical Sciences (Pharmacognosy) to Al-Azhar University, Faculty of Pharmacy, Pharmacognosy Department. The research work was carried out by him at laboratories of Pharmacognosy Department and Regional center of Mycology, Cairo, Egypt, under my guidance and supervision during the period 2010 – 2013.

### **Prof. Mohammed Hosny Hussein**

Pharmacognosy Department Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.

### **CONTENTS**

|                                                                    | Page  |
|--------------------------------------------------------------------|-------|
| Abstract                                                           | 1     |
| Statement of Problem                                               | 3     |
| Objectives of the study                                            | 4     |
| Chapter I                                                          |       |
| A- INTRODUCTION                                                    | 5-18  |
| A.1. Outline of Microbial biotransformation.                       | 5     |
| A.2. Why Use Biotransformations.                                   | 10    |
| A.3. Stereochemical Aspects of Xenobiotic Biotransformation.       | 11    |
| A.4. Phase I and Phase II Biotransformation.                       | 13    |
| A.5. Advantages of microbial transformation.                       | 15    |
| A.6. Disadvantages and challenges of microbial transformation.     | 18    |
| B- REVIEW OF LITERATURE                                            | 19-56 |
| 1- Curcumin                                                        | 19    |
| 1.a. Chemical properties.                                          | 19    |
| 1.b. Stability aspects of curcumin.                                | 21    |
| 1.c. Biosynthesis of curcumin.                                     | 32    |
| 1.d. Biological attributes of curcumin.                            | 24    |
| 1.e. Metabolism, Bioavailability and Pharmacokinetics of curcumin. | 32    |
| 1.f. Biotransformation of curcumin.                                | 35    |
| 2- Aesculin                                                        | 38    |
| 2.a. Introduction                                                  | 38    |
| 2.b. Biosynthesis of aesculin and aesculetin                       | 39    |
| 2.c. Pharmacological Activities of aesculin and aesculetin         | 40    |
| 2.d. Metabolism of coumarin                                        | 42    |
| 1. e. Biotransformation of aesculin.                               | 43    |
| 3- α-Santonin                                                      | 46    |
| 3.a. Introduction                                                  | 46    |
| 3.b. Function of the $\alpha$ -methylene- $\gamma$ -lactone group  | 47    |
| 3.c. Biosynthetic pathway of α-Santonin                            | 48    |

### 3.d. Biotransformation of $\alpha$ -Santonin

| Chapter II                                                                       |       |
|----------------------------------------------------------------------------------|-------|
| <b>EXPERIMENTAL</b>                                                              | 57    |
| A- Materials and Equipment's                                                     | 58-62 |
| A.1. Substrates.                                                                 | 58-62 |
| A. 2. Microorganisms.                                                            |       |
| A. 3. Culture media.                                                             |       |
| A. 4. Materials for chromatographic study.                                       |       |
| A. 5. General laboratory equipment's.                                            |       |
| B- Methods of Microbial transformation study                                     | 62-69 |
| B.1. Analytical-Scale Biotransformation of Curcumin (1), Aesculin (2) and        |       |
| Santonin (3).                                                                    |       |
| B.2. Preparative-Scale Biotransformation of Curcumin (1), Aesculin (2) and       | 65    |
| Santonin (3).                                                                    |       |
| B.3. Isolation and Purification of the Metabolites                               | 65    |
| C- Biological Evaluation                                                         | 70    |
| C.1. Antioxidant activities                                                      | 70    |
| Method of estimation of antioxidant Activity:                                    | 73    |
| 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay of Antioxidant Activity               |       |
| C.2. Cytotoxicity activities                                                     | 76    |
| Cytotoxicity of different substrates and their metabolites against liver, ovary, |       |
| lung, colon, breast and skin tumor cell lines                                    |       |

| Chapter III                                                        |     |
|--------------------------------------------------------------------|-----|
| RESULTS AND DISCUSSION                                             | 82  |
| A- Structure Elucidation of isolated metabolites                   | 83  |
| 1- Curcumin metabolites:                                           | 84  |
| 1.a. Hexahydrocurcumin                                             | 85  |
| 1.b. Octahydrocurcumin                                             | 94  |
| 1.c. (3S,5S)-1,7-Bis(4-hydroxy-3-methoxyphenyl)- 3,5-dioxolan-4-ol | 103 |
| 2- Aesculin Metabolite:                                            | 118 |

| Aesculetin                                                                    |     |
|-------------------------------------------------------------------------------|-----|
| 3- α-Santonin Metabolites:                                                    |     |
| 1.a. 1, 2 Dihydro-α-Santonin                                                  | 125 |
| 1.b. $8\beta$ -hydroxy- $\alpha$ -Santonin (8-Epiartemisin).                  | 132 |
| 1.c. (11 <i>S</i> )-6-oxoedudesm-1 (2), 4 (14)-dien-12-oic acid methyl ester. | 138 |
| Results of Biological evaluation                                              | 145 |
| 1- Results of Antioxidant Activities.                                         | 145 |
| 2- Results of Cytotoxic Activities                                            | 152 |
| Summary                                                                       | 160 |
| Reference.                                                                    | 166 |
| Arabic Summary.                                                               |     |

### **LIST OF TABLES**

| Table |                                                                                                                                                                                                    | Page |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1     | Some selected milestones of industrially relevant biotransformation and biocatalytic processes                                                                                                     | 7    |
| 2     | General pathways of xenobiotic biotransformation and their major subcellular location.                                                                                                             | 15   |
| 3     | Physico-chemical properties of curcuminoids                                                                                                                                                        | 20   |
| 4     | Important factors controlling the antioxidant and pro-oxidant activities of curcumin.                                                                                                              | 32   |
| 5     | Major microbial transformations of curcumin.                                                                                                                                                       | 35   |
| 6     | Major plant cell cultures transformations of curcumin.                                                                                                                                             | 37   |
| 7     | Major microbial transformations of α-Santonin                                                                                                                                                      | 51   |
| 8     | Major plant cell cultures of α-Santonin                                                                                                                                                            | 54   |
| 9     | Tumor cell lines used for cell culture and cytotoxic assays                                                                                                                                        | 78   |
| 10    | <sup>1</sup> H- <sup>13</sup> C and DEPT NMR spectral data of curcumin.                                                                                                                            | 84   |
| 11    | <sup>1</sup> H- and <sup>13</sup> C-NMR spectral data of curcumin (Curc-M-1)                                                                                                                       | 89   |
| 12    | <sup>1</sup> H- and <sup>13</sup> C-NMR spectral data of metabolite (Curc-M-2)                                                                                                                     | 97   |
| 13    | <sup>1</sup> H- and <sup>13</sup> C-NMR spectral data of metabolite (Curc-M-3)                                                                                                                     | 106  |
| 14    | <sup>1</sup> H NMR spectrum of aesculetin                                                                                                                                                          | 120  |
| 15    | <sup>1</sup> H- and <sup>13</sup> C NMR spectral data of α-santonin                                                                                                                                | 124  |
| 16    | <sup>1</sup> H- and <sup>13</sup> CNMR spectral data of 1, 2 Dihydro-α-santonin.                                                                                                                   | 128  |
| 17    | <sup>1</sup> H-NMR spectrum of 8β-hydroxy-α-santonin (8-Epiartemisin).                                                                                                                             | 135  |
| 18    | <sup>1</sup> H- and <sup>13</sup> CNMR spectral data of (Sant-M-3)                                                                                                                                 | 141  |
| 19    | Effects of substrates, metabolites and positive controls on the <i>in vitro</i> free radical generation.                                                                                           | 149  |
| 20    | Cytotoxic activities of curcumin, aesculin and □-santonin and their fungal metabolites against liver, ovary, lung, colon, breast and skin cell lines.                                              | 158  |
| 21    | Summary of the isolated metabolites from curcumin, aesculin and α-santonin by fermentation of <i>Cunninghamella echinulata</i> (RCMB 012002) and <i>Mucor rouxii</i> (RCMB 015004) as biocatalysts | 162  |

### **LIST OF FIGURES**

| Figure |                                                                  | Page |
|--------|------------------------------------------------------------------|------|
| 1      | Biocatalytic processes.                                          | 9    |
| 2      | Stereochemical aspects of xenobiotic biotransformation.          | 12   |
| 3      | Phase I and Phase II biotransformation.                          | 14   |
| 4      | Structures of curcumin, demethoxy-curcumin and bis-              | 20   |
|        | demethoxy-curcumin.                                              |      |
| 5      | Tautomerism of curcumin under physiological conditions.          | 21   |
| 6      | pH dependent degradation of curcumin.                            | 22   |
| 7      | Biosynthetic Pathway of curcumin.                                | 23   |
| 8      | Medicinal properties of curcumin.                                | 24   |
| 9      | Ultraviolet rays may affect the skin through NF-kB-induced       | 25   |
|        | inflammation.                                                    |      |
| 10     | Curcumin inhibits p300 HAT activity and thereby the              | 26   |
|        | progression of cardiomyocyte hypertrophy and heart failure.      |      |
| 11     | A- Modulation of tumor biomarkers by curcumin                    | 27   |
|        | B- Curcumin inhibits the activity of NF-kB, a factor involved in |      |
|        | cancer progression.                                              |      |
| 12     | Curcumin metabolism.                                             | 34   |
| 13     | Biosynthetic pathway of aesculin.                                | 40   |
| 14     | Pharmacological activities of aesculin and aesculetin.           | 41   |
| 15     | Metabolism of simple coumarins.                                  | 43   |
| 16     | Biotransformation of aesculin.                                   | 45   |
| 17     | Sesquiterpene lactones with eudesmane framework.                 | 46   |
| 18     | Biosynthetic pathway of α-santonin.                              | 50   |
| 19     | General biotransformation protocol.                              | 63   |
| 20     | <sup>1</sup> H-NMR of Curcumin metabolite-1 (Curc-M-1).          | 90   |
| 21     | <sup>13</sup> C-NMR of Curcumin metabolite-1 (Curc-M-1).         | 91   |
| 22     | DEPT of Curcumin metabolite-1 (Curc-M-1).                        | 92   |
| 23     | ESI-MS of Curcumin metabolite-1 (Curc-M-1).                      | 93   |
| 24     | <sup>1</sup> H-NMR of Curcumin metabolite-2 (Curc-M-2).          | 98   |
| 25     | <sup>13</sup> C-NMB of Curcumin metabolite-2 (Curc-M-2)          | 99   |

| 26 | DEPT of Curcumin metabolite-2 (Curc-M-2).                         | 100 |
|----|-------------------------------------------------------------------|-----|
| 27 | ESI-MS of Curcumin metabolite-2 (Curc-M-2).                       | 101 |
| 28 | EI-MS of Curcumin metabolite-2 (Curc-M-2).                        | 102 |
| 29 | <sup>1</sup> H-NMR of Curcumin metabolite-3 (Curc-M-3).           | 107 |
| 30 | <sup>13</sup> C-NMR of Curcumin metabolite-3 (Curc-M-3).          | 108 |
| 31 | DEPT of Curcumin metabolite-3 (Curc-M-3).                         | 109 |
| 32 | HMQC of Curcumin metabolite-3 (Curc-M-3).                         | 110 |
| 33 | ESI-MS of Curcumin metabolite-3 (Curc-M-3).                       | 111 |
| 34 | Schematic drawing of the cytochrome P450 complex catalytic cycle. | 114 |
| 35 | Catalytic cycle for the hydroxylation of substrate XH by          | 116 |
|    | a cytochrome P-450.                                               |     |
| 36 | Biotransformation pathway of curcumin catalyzed by                | 117 |
|    | Cunninghamella echinulata (RCMB 012002).                          |     |
| 37 | <sup>1</sup> H-NMR of aesculin metabolite (aesculetin).           | 122 |
| 38 | EI-MS of aesculin metabolite (aesculetin).                        | 123 |
| 39 | <sup>1</sup> H-NMR of α-Santonin metabolite-1 (San-M-1).          | 129 |
| 40 | <sup>13</sup> C NMR of α-Santonin metabolite-1 (San-M-1).         | 130 |
| 41 | EI-MS of α-Santonin metabolite-1 (San-M-1).                       | 131 |
| 42 | <sup>1</sup> H-NMR of α-Santonin metabolite-2 (San-M-2).          | 136 |
| 43 | EI-MS of α-Santonin metabolite-2 (San-M-2)                        | 137 |
| 44 | <sup>1</sup> H-NMR of α-Santonin metabolite-3 (San-M-3).          | 142 |
| 45 | <sup>13</sup> C-NMR of α-Santonin metabolite-3 (San-M-3).         | 143 |
| 46 | EI-MS of α-Santonin metabolite-3 (San-M-3).                       | 144 |
| 47 | EI-MS of α-Santonin metabolite-1 (San-M-1).                       | 148 |
| 48 | Possible mechanisms of chemopreventive agents in experimental     | 153 |
|    | carcinogenesis.                                                   |     |

### **List of Abbreviations**

| UV                  | Ultraviolet                                                  |
|---------------------|--------------------------------------------------------------|
| IR                  | Infra- red                                                   |
| MS                  | Mass Spectrometry                                            |
| ESI-MS              | Electro-spray Ionization Mass Spectrometry                   |
| m/z                 | Mass to Charge ratio                                         |
| <sup>1</sup> H NMR  | Proton Nuclear Magnetic Resonance                            |
| <sup>13</sup> C NMR | Carbon 13 Nuclear Magnetic Resonance                         |
| DEPT                | Distortionless Enhancement by Polarization transfer          |
| HMQC                | Hetro-nuclear Multiple Quantum Coherence                     |
| Hz                  | Hertz                                                        |
| MHz                 | Mega hertz                                                   |
| ppm                 | Parts Per Million                                            |
| s                   | Singlet                                                      |
| d                   | Doublet                                                      |
| t                   | Triplet                                                      |
| m                   | Multiplet                                                    |
| brs                 | Broad singlet                                                |
| J                   | Coupling constant                                            |
| δ                   | Chemical shift                                               |
| nm                  | Nanometer                                                    |
| DPPH                | 2,2-diphenyl-1-picrylhydrazyl                                |
| BHT                 | Butylated hydroxyl toluene                                   |
| MTT                 | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
| ED <sub>50</sub>    | Effective dose                                               |
| IC <sub>50</sub>    | The half maximal inhibitory concentration                    |

### **Abstract**

Biotransformation is a fundamentally practical discipline in which the objective is to use enzymes and whole cells as catalysts for conversions of organic substrates. This subject is growing very rapidly, finding ever increasing applications ranging from pharmaceuticals and fine chemicals to food additives, cosmetic ingredients and biofuels. A biotransformation, as understood by the growing community of chemists and bio-scientists who practise in the area, is the conversion of one chemical entity to another by the action of a biological system which, in our case will be primarily micro-organisms or enzymes derived from them. Biotransformation has become an important tool in the area of synthetic organic chemistry and its application is continuously growing in pharmaceutical and chemical industries. It can provide a method of performing chemical reactions on an inaccessible site of organic compounds in a *regio*- and *stereo*-selective manner to generate derivatives that may be difficult to obtain by traditional organic synthesis.

Natural products are an incredibly diverse group of small (usually molecular weight less than 1500 Da) organic compounds isolated from a variety of natural sources, principally plants. The reason that natural products capture the imagination of organic chemists and pharmaceutical scientists is because of their well-documented and wide ranging biological activities and their skeletal diversity and intriguing functional group characteristics, which render them as indispensable leads for probing biological system status and for drug discovery with new bioassay systems. Biotransformations of several phenolic and terpenoid natural products are usually carried out by whole cells of bacteria, cyanobacteria, yeasts, microalgae, fungi, and plants or isolated enzymes. Nearly two-thirds of the papers published on the biotransformation of phenolic and terpenoid natural products are based on whole-cell transformations, with the majority of studies on bacterial and fungal transformations, while isolated enzymatic transformations are only responsible for 7% of the publications.

Research on the utility of microorganisms as models for mammalian drug metabolism has received considerable attention. The zygomycete fungi such as *Cunninghamella* and *Mucor* spp.have demonstrated the ability to metabolize xenobiotic compounds including pharmaceutical drugs and to produce drug metabolites that are known to be also formed in mammals.

In order to use fungal model to predict a mammalian drug metabolic pathway, we report, the biotransformation results of two phenolics (curcumin and aesculin) and a sesquiterpene lactone ( $\alpha$ -santonin) using 16 different microorganisms.

Of the organisms which effected transformation, scale up studies was carried out with selected cultures ( $Cunninghamella\ echinulata\ (RCMB\ 012002)$  and  $Mucor\ rouxii\ (RCMB\ 015004)$  as biocatalyst according to the standard two-stage fermentation protocol to isolate the maximum number of metabolites detected in the culture broth in reasonable yields. We describe the isolation and structural elucidation of seven microbial metabolites (three metabolites from curcumin, one major metabolite from aesculin and three metabolites from  $\alpha$ -santonin) produced by  $Cunninghamella\ echinulata\ and\ Mucor\ rouxii$ . The isolated metabolites were evaluated for their possible impact on the antioxidant and cytotoxic activities in relation to structures are also discussed.

The study includes a general introduction and the experimental techniques arranged in four different chapters.

### Chapter I

This is an introductory chapter and describes the literature related to various terminologies such as microbial transformation, chemistry and bioconversion of curcumin, aesculin and  $\alpha$ -santonin and also about the current status of research on different pharmacological aspects of these compounds.

### **Chapter II**

This chapter gives details of experimental methods used in isolation of curcumin, aesculin and  $\alpha$ -santonin metabolites with selected cultures (*Cunninghamella echinulata* (RCMB 012002) and *Mucor rouxii* (RCMB 015004). This chapter also gives details of experimental methods of biological evaluation (antioxidant and cytotoxicity) of the substrates and their isolated metabolites using different model systems.