

دراسات وراثية جزيئية على الدور المحتمل لموانع الحمل الهرمونية في إحداث سرطان الثدي

رسالة مقدمة لاستكمال متطلبات الحصول على درجة الماجستير في علم الحيوان

مقدمة من

شيماء مصطفى السيد بكالوريوس علوم، جامعة عين شمس يونيو 2003

تحت إشراف

أ_د/ نجوى حسن على حسن أستاذ الوراثة الخلوية- قسم علم الحيوان كلية العلوم- جامعة عين شمس

أد/ عادل جمال المسيري

أستاذ والمدير التنفيذي ورئيس وحدة البيولوجية الجزيئية بمركز البحوث الطبية

كلية الطب- جامعة عين شمس

د/ أميمة محمد حسنين

استشارى مساعد الباثولوجيا الإكلينيكية- وحدة البيولوجية الجزيئية مركز البحوث الطبية- كلية الطب- مستشفيات جامعة عين شمس

كلية العلوم - جامعة عين شمس **2013**

Molecular Genetic Studies on the Possible Role of Hormonal Contraceptives in Inducing Breast Cancer

Thesis
Submitted for partial fulfillment of Master Degree of Science
In Zoology

By

Shaimaa Mostafa Elsayed B.Sc. Sci. (Zoology and Chemistry)

Under Supervision of **Prof. Dr. Nagwa Hassan Ali Hassan**

Professor of Cytogenetics Department of Zoology, Faculty of Science, Ain Shams University

Prof. Dr. Adel Gamal El Messiry

Professor Excutive Director and head of Molecular Biology unit of Medical Research Center Faculty of Medicine - Ain Shams University

Dr. Omayma Mohamed Hassanein

MD. Associate consultant of clinical pathology,
Molecular Biology Department,
Medical Research Center,
Faculty of Medicine- Ain Shams University Hospitals

Faculty of Science- Ain Shams University 2013

First and for most, I feel indebted to ALLAH, most graceful, who gave me the strength to complete this work.

I would like to express my deepest gratitude and appreciation to my principal supervisor, **Prof. Dr. Nagwa Hassan Ali Hassan,** Professor of cytogenetics, Faculty of Science, Ain Shams University, for her generous support, encouragement, helpful suggestions and continuous supervision throughout the research,

I am particularly grateful to **Prof. Dr. Adel Gamal El Messiry,** Professor, L'Director of Medical Research Center Faculty of Medicine, Ain Shams University, for his valuable foresight and meticulous supervision of this work.

Words are few and do fail to express my deepest gratitude to **Dr. Omayma Mohamed Hassanein,** MD. Associate consultant of clinical pathology, Molecular Biology Department, Medical Research Center, Faculty of Medicine, Ain Shams University, for her continuous encouragement, and close supervision throughout the course of this work and for her precious time and effort that made this essay possible.

My thanks also extended to **Dr. Nabil Saied Awad** for suggesting the plan of this work.

Special thanks are also due to Professor **Afaf H. Khalil**, Department of Psychiatry, Faculty of Medicine, Ain Shams University, my lovely husband **AHMED**, my uncle (**Osama**) Lmy best friend **Eman Beshir** for her Valuable help and advices.

My appreciation is extended to my colleagues in the Medical Research Center for their distinguished role in supporting the development of this work.

Last but not least, I would like to express my endless gratitude to my dear grandmother (Miss. Aida Amien), dear father and dear mother, my family, my children Mahmud, layan and, Khalid my sister Sherien, my brothers Mohamed and Ahmed and friends for their great encouragement and support during the period of my investigation.

Shaimaa Moustafa

أدعوكَ ربي

سبحانك الله ربـــــى يامن خلقت الكـــون بالكاف والنون

فكان أساسه العــــدك' فقلتَ له كن فيكـــون

بالذكر قد إطمَأَنَ قلبــى فبذكركَ راحة"وسكون

فعيناك أبدا لاتغفــــل′ وقد غفلت كل العيــون

فظنی بقدرتك يقينـــــاً قد فاق مافی الظنـــون

نصرت شعبـــا طيبــــا فكن له عونا وسنـــــدا لشبابـه أنت المصــون

أدعوكَ فى غسق الدجى أن ترعى مصر وشعبها وأحفظها من كــل الفتـن فلولاك مصرا لم تكـــون

آمين ...آمين...آمين يارب العالمين

List of Contents

Subject	Page
List of Abbreviations	I
List of Tables	V
List of Figures	VII
Abstract	XI
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter (1): Breast Cancer	4
Chapter (2): Hormonal Contraceptives	47
Materials and Methods	52
Results	69
Discussion	108
Summary and Conclusion	120
Recommendations	126
References	128
Arabic Abstract	
Arabic Summary	

List of Abbreviations

Abb.	Meaning
%	Percentage
μl	Microlitre
ACS	American Cancer Society
AJCC	American Joint Committee on Cancer
Arg	Arginine
ASCO	American society of clinical oncology
ATM gene	Ataxia telengectasia mutated gene
Bp	Base pair
BRCA1	Breast-ovarian cancer syndrome 1
BRCA2	Breast-ovarian cancer syndrome 2
CA 27.29	Carbohydrate antigen 27.29
CA15.3	Carbohydrate antigen 15.3
CBST	Cairo breast screening trial
CDK	Cyclin-dependent kinase
cDNA	Complementary DNA
CEA	Carcinoembryonic antigen
CIS	Carcinoma in situ
CK	Cytokeratin
COCs	Combined oral contraceptives
Ct	Cycle threshold
DCIS	Ductal carcinoma in situ
DEPC	Double distilled diethyl pyrocarbonate

Abb.	Meaning
DNA	Deoxyribonucleic acid
EDTA	Ethyl diamine tetra-acetic acid
EL	Erythrocyte lysis buffer
ELISA	Enzyme-linked immunosorbent assay
ER	Estrogen receptors
ERD	Extensive residual disease
FDA	Food and Drug Administration
Fig.	Figure
G1	Gastrointestina 1
GADD	Growth arrest and DNA damage inducible
	genes
GEP	Gene expression profiling
HCs	Hormonal contraceptives
HER-2	Human epidermal growth factor receptor-2
HRT	Hormonal replacement therapy
IDC	Invasive Duct Carcinoma
IHC	Immunohistochemistry
ILC	Invasive Lobular Carcinoma
kDa	Kilo dalton
LCIS	Lobular carcinoma in-situ
Mdm2	Mouse double minute gene 2
MRD	Minimal residual disease
mRNA	Messenger RNA
NACB	National Academy of Clinical Biochemistry

Abb.	Meaning
NAD	Nicotinamide adenine dinucleotide
NADH	Reduced p-nicotinamide adenine dinucleotide
NCI	National cancer institute
NED	No evident disease
ng	Nanogram
NO	Nitric oxide
N-terminus	Nitrogen terminus
OCS	Oral contraceptives
OD	Optical density
P	Probability
p	short arm
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
pCR	Pathologic complete response
POP	Progestene only pill
PR	Progesterone receptor
Pro	Proline
PTEN	Phosphatase and TENsin
RB	Retinoblastoma gene
RFLP	Restriction fragment length polymorphism
RNA	Ribonucleic acid
RPM	Rotation per minute
RT	Reverse transcriptase

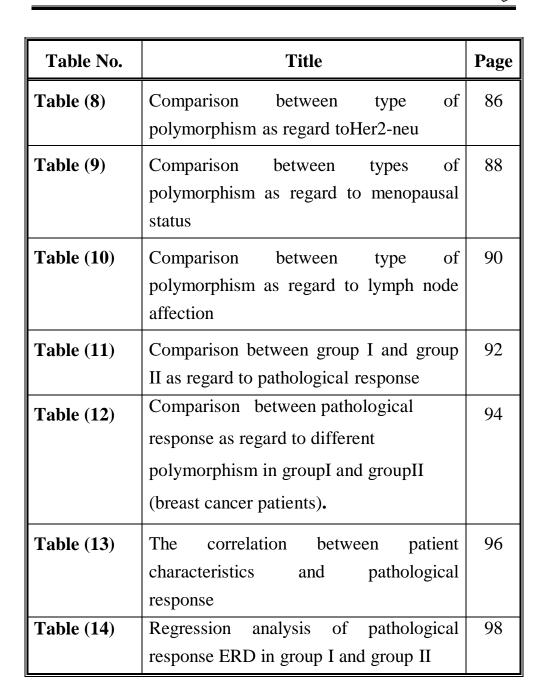
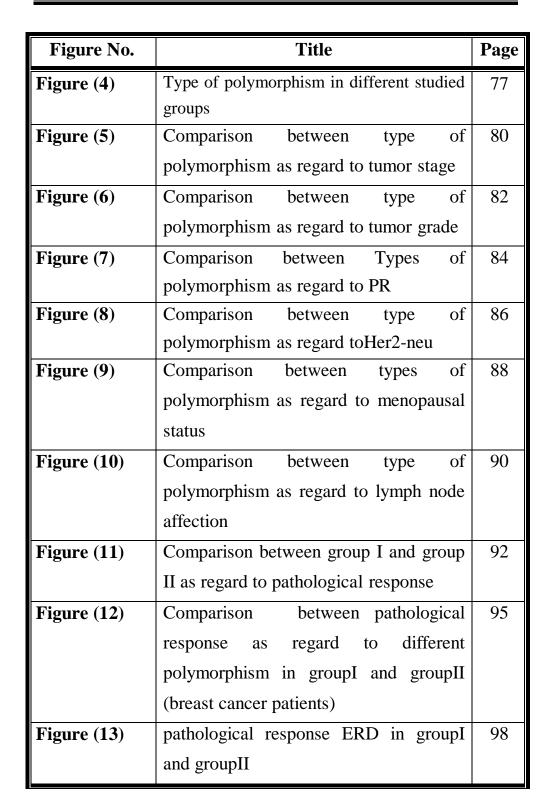


Abb.	Meaning
RT-PCR	Reverse transcriptase polymerase chain
	reaction
SD	Standard deviation
SNP	Single nucleotide polymorphism
SV ₄₀	Simian virus 40
TAM	Tamoxifen
Taq	Thermus aquaticus
TCC	Transitional cell carcinoma
TNF	Tumor necrosis factor
TNM	Tumor-Node-Metastasis
WHO	World Health Organization
WT	Wild type
β-ΜΕ	β-Mercaptoethanol

List of Tables


Table No.	Title	Page
Table (R-1)	Genes mutated in Familial Breast Cancer	11
Table (R-2)	TNM Classification for Breast Cancer	28
Table (R-3)	AJCC Stage Grouping	30
Table (R-4)	Scarff-Bloom-Richardson Grade System	31
Table (R-5)	Survival percentage of breast carcinoma patients by TNM stage	40
Table (1)	Clinical characteristics of group I and groupII each group included 50 patients	71
Table (2)	Age (years) of different study groups	73
Table (3)	Type of polymorphism in different studied groups	77
Table (4)	Relation between <i>P53</i> gene polymorphic variants and clinical features within 100 breast cancer patients (groupI +groupII)	78
Table (5)	Comparison between type of polymorphism as regard to tumor stage	80
Table (6)	Comparison between type of polymorphism as regard to tumor grade	82
Table (7)	Comparison between Types of polymorphism as regard to PR	84

V

List of Figures

Figure No.	Title	Page
Figure (R-1)	Factors contributing to breast cancer	10
	development	
Figure (R-2)	Location of BRCA1 and BRCA2 genes	13
	on the chromosomes	
Figure (R-3)	Role of BRCAl, BRCA2 and ATM in	14
	DNA repair	
Figure (R-4)	Each human cell contains 23 pairs of	15
	chromosomes which can be	
	distinguished by size and by unique	
	banding patterns. The P53 tumor	
	suppressor gene is located on the small	
	arm of chromosome number 17	
	(National Institutes of Health).	
Figure (R-5)	Schematic representation of the P53	16
	structure. P53 contains 393 amino	
	acids, consisting of three functional	
	domains	
Figure (R-6)	Stages of breast cancer.	29
Figure (R-7)	Lobular carcinoma in situ and the risk	35
	of breast cancer.	
Figure (1)	Age (years) of different study groups	73
Figure (2)	Gel electrophoresis of PCR product	74
Figure (3)	PCR-RFLP analysis of the P53 Gene	75
	Exon 4 at codon 72.	

Figure No.	Title	Page
Figure (14)	Electropherogram view of analyzed	100
	data obtained from Labeled amplified	
	P53 gene with big dye terminator for	
	sample number (7) of group I	
Figure (15)	Sequence alignment for sample number	101
	(7) of group I using Nebi blast	
	programs to search in nucleotide	
	database Using nucleotide query	
Figure (16)	Electropherogram view of analyzed	102
	data obtained from Labeled amplified	
	P53 gene with big dye terminator for	
	sample number (17) of group II	
Figure (17)	Sequence alignment for sample number	103
	(17) of groupII using Ncbi blast	
	programs to search in nucleotide	
	database Using nucleotide query	
Figure (18)	Electropherogram view of analyzed	104
	data obtained from Labeled amplified	
	P53 gene with big dye terminator for	
	sample number (21) of group III	
Figure (19)	Sequence alignment for sample number	105
	(21) of group III using Ncbi blast	
	programs to search in nucleotide	
	database Using nucleotide query	

IV