Atrial Reverse Remodeling after Cardiac Resynchronization Therapy for Heart Failure

Chesis

Submitted for partial fulfillment of Doctorate degree (MD) in **Cardiology**

By

Alaa Allah Mohamed Al Anany

MB BCh, M.Sc. Cardiology Faculty of Medicine – Ain Shams University

Under Supervision of

Prof. Dr. Said Abdel Hafiz Khaled

Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Mohamed Amin Abdel Hameed

Associate Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Mazen Tawfik Ibrahim

Associate Professor of Cardiology Faculty of Medicine – Ain Shams University

Dr. Ayman Mortada Abdel Motalib

Lecturer of Cardiology
Faculty of Medicine – Ain Shams University

Dr. John Kamel Zarif

Lecturer of Cardiology
Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2014

First, and foremost, my deepest gratitude and thanks should be offered to "ALLAHI", the Most Kind and Most Merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to **Prof. Dr. Said Abdel Hafiz Khaled,** Professor of Cardiology, Faculty of Medicine – Ain Shams University, for his continuous support and guidance for me to present this work. I really have the honor to work under his generous supervision.

I acknowledge with much gratitude to **Dr. Mohamed Amin Abdel Hameed**, Associate Professor of Cardiology, Faculty of Medicine – Ain Shams University for his great supervision and unlimited help to provide all facilities to accomplish this work.

I extend my appreciation and thanks to **Dr. Mazen Taufik Ibrahim**, Associate Professor of Cardiology, Faculty of Medicine – Ain Shams University for his great supervision, valuable advice, help and encouragement.

I would like also to profoundly thank **Dr. Ayman Mortada Abdel Motalib**, Lecturer of Cardiology, Faculty of Medicine – Ain Shams

University, for his cooperation and help during the whole work.

I can't forget to thank and appreciate **Dr. John Kamel Zarif**, Lecturer of Cardiology, Faculty of Medicine – Ain Shams University, for his great efforts to complete this work.

I would to thank all those helped me to accomplish this work, **Patients and all my Colleagues**.

Last but not least, thanks to my Parents and my Family for helping me to finish this work.

🙇 Alaa Allah Al Anany

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	viii
Protocol	•••••
Introduction	1
Aim of the Study	2
- Heart Failure with Reduced Ejection Fraction	3
- Cardiac Resynchronization Therapy (CRT)	22
- Left Atrium	33
- Strain imaging	54
Patients and Methods	65
Results	75
Discussion	100
Summary	113
Recommendations and Conclusion	116
References	117
Appendices	I
Arabic Summary	•••••

List of Abbreviations

ACS : Acute coronary syndrome

AF : Atrial fibrillation

ANP : atrial natriuretic peptide

AP : Anteroposterior **AV** : Atrio-ventricular

AVP : Arginine vasopressin
BIVP : Biventricular pacing

BNP : Brain natriuretic peptide

BP : Blood pressure

CABG: Coronary artery bypass grafting

CAD : Coronary artery disease

CI : Cardiac index

COPD : Chronic obstructive pulmonary disease

CPET : Cardiopulmonary exercise testing

CRP : C-reactive protein

CRT : Cardiac resynchronization therapy

CT : Computed tomographyCVS : Cerebrovascular stroke

DM : Diabetes mellitus.EF : Ejection fraction

ESR : Erythrocyte sedimentation rate

HDL : High-density lipoprotein

HF : Heart failure

IDCM: Idiopathic dilated cardiomyopathy

IL: Interleukin

IVS : Interventricular septal thickness

KCCQ : Kansas City Cardiomyopathy Questionnaire

LA : Left atrium

List of Abbreviations (Cont...)

LAD : Left atrial diameter

LAVI : Left atrial volume indexLBBB : Left bundle branch block

LV : Left ventricle

LVEF : Left ventricular ejection fraction

LVEDD : LV end diastolic dimension

LVEDV : LV end diastolic volume

LVESD : LV End systolic dimension

LVESV : LV end-systolic volume

LVFW: Left ventricular free wall

LVP : Left ventricular

MI : Myocardial infarction

MLHFQ: Minnesota Living with Heart Failure Questionnaire

MRI : Magnetic resonance imaging

MWT : Minute walk testNE : Norepinephrine

NHANES: National Health and Nutrition Examination Survey

NYHA : New York Heart Association

PAP : Pulmonary artery pressure

PCI : Percutaneous coronary intervention
PCWP : Pulmonary capillary wedge pressure

PET : Positron emission tomography

PRA : Plasma renin activity

PSLAX : Standard parasternal long-axis

QOL : Quality of life **RV** : Right ventricle

RVEF : Right ventricular ejection fraction

SCV : Superior caval vein

List of Abbreviations (Cont...)

SD : Standard deviation

SOLVD : Studies on Left Ventricular Dysfunction

SPECT : Single-photon emission computed tomography

SPSS : Statistical Package for the Social Sciences

SPWD : Septal to posterior wall motion delay

STE : Speckle-tracking echocardiography

TD : Tissue Doppler

TNF : Tumor necrosis factor

VF : Ventricular fibrillationVT : Ventricular tachycardia

WHO : World Health Organization

2D : Two-dimensional3D : Three-dimensional

List of Tables

Cable No	o. Eitle Page No.
Table (1):	Risk Factors for Cardiac Failure: Framingham Offspring and Cohort Study
Table (2):	Causes of Chronic Heart Failure10
Table (3):	Prognostic Variables in Heart Failure Patients14
Table (4):	New York Heart Association functional classification based on severity of symptoms and physical activity
Table (5):	Mechanisms of Acute Improvement in Cardiac Function with Cardiac Resynchronization Therapy (CRT)
Table (6):	Recommendations for the use of CRT where the evidence is strong—patients in sinus rhythm with NYHA functional class III and ambulatory class IV heart failure (ESC 2012)27
Table (7):	Recommendations for the use of CRT where the evidence is strong—patients in sinus rhythm with NYHA functional class II heart failure (ESC 2012)
Table (8):	Indications for cardiac resynchronization therapy in patients in sinus rhythm (ESC 2013)29
Table (9):	Inclusion criteria, design, endpoints, and main findings of the randomized clinical trials evaluating cardiac resynchronization therapy in heart failure patients and sinus rhythm30
Table (10):	Phasic LA function assessment and related calculation

List of Tables (Cont....)

Cable No	v. Eitle	Page No.
Table (11):	Reference limits and partition values atrial dimensions/volumes	
Table (12):	Critical Elements and Common Pitt Accurate Measurement and Interpret Maximum LA Volume	ation of
Table (13):	Sex distribution in the different study	groups76
Table (14):	Comparing the different groups regard factors of systolic heart failure a morbidities.	and co-
Table (15):	Comparing the different groups redistribution of dilated (DCM) and it (ICM) cardiomyopathy.	schemic
Table (16):	Comparing the different groups r assessment of symptoms before CRT ins	
Table (17):	The mean ±standard deviation of body area, body mass index, heart rate, syst diastolic blood pressure in the different g	tolic and
Table (18):	The mean ± standard deviation of QR in the different study groups	
Table (19):	The mean ±standard deviation of ser K ⁺ , Serum creatinine level before CR7	•
Table (20):	The mean ± standard deviation of echocardiography findings in respondence non-responders groups	ders and
Table (21):	The distribution of mitral regurgitate tricuspid regurgitation in responders a responders groups	and non-

List of Tables (cont...)

Cable No	v. Eitle	Page No.
Table (22):	The mean±standard deviation echocardiography findings in response non-survivors groups	ponders and
Table (23):	The distribution of mitral regurgitation in responde survivors groups.	ers and non-
Table (24):	Comparing the responders responders groups regarding ass symptoms after CRT insertion	sessment of
Table (25):	Comparing the responders and not groups regarding occurrence of arr stroke.	hythmia and
Table (26):	The mean ±standard deviation of systolic and diastolic blood pressure groups.	e in the both
Table (27):	The mean ±standard deviation of K ⁺ , Serum creatinine level in for responders and non responders groups	ollow up of
Table (28):	The mean ±standard deviation o echocardiography findings in responsers groups	ponders and
	The distribution of mitral reguresponders and non-responders follow up echocardiography	groups in
Table (30):	The mean ±standard deviation of echocardiography findings in group before and after CRT by 3m	responders

List of Tables (Cont....)

Cable No	v. Citle	Page No.
, ,	The mean ±standard deviation of assessment echocardiography parar responders group before and after CR	meters in
Table (32):	The change of degree of mitral region responders group before and after	C
Table (33):	The mean ±standard deviation assessment echocardiography parar responders group before and after CR	meters in
Table (34):	Different independent predictors of to CRT	_

List of Figures

Figure No	v. Eitle	Page No	v.
Figure (1):	Prevalence rates of heart failure by genage in the United States, 1988-1994—t National Health and Nutrition Examples (NHANES III).	he Third mination	.4
Figure (2):	Cardiovascular mortality in Egypt, Health Organization - NCD Country 2011	Profiles,	.5
Figure (3):	Cumulative incidence of heart far women (A) and men (B) according mass index (BMI) at the baseline exam	to body	.8
Figure (4):	Survival in HF patients compared with patients.		13
Figure (5):	Stages of heart failure and treatment op systolic heart failure		6
Figure (6):	Pressure-volume graphs from a patie baseline left bundle branch block as a of varying pacing sites	function	26
Figure (7):	Normal human hearts with corresdiagrams.	-	33
Figure (8):	Left atrial (LA) pressure–volume loop LA phasic function and volumes	_	35
Figure (9):	Measurement of left atrial diameter (I.Mmode, guided by parasternal slimage	hort-axis	36
Figure (10):	Using transthoracic echocardiography, methods are available to assess left atria		39

List of Figures (Cont...)

Figure No	. Citle Page I	No.
Figure (11):	Measurement of left atrial volume from arealength method using apical 4-chamber and apical 2-chamber views at ventricular end systole	41
Figure (12):	Measurement of left atrial volume from biplane method of disks (modified Simpson's rule) using apical 4-chamber and apical 2-chamber views at ventricular end systole	42
Figure (13):	Strain in three dimensions	57
Figure (14):	Representation of the 3 main components of the myocardial strain	59
Figure (15):	Diastolic and systolic images of the heart. Systolic shortening of the left ventricle relative to diastolic length	59
Figure (16):	Measurement of left atrial longitudinal strain by speckle tracking.	62
Figure (17):	End-systolic and end-diastolic frames showing colour-coded left atrial longitudinal strain	63
Figure (18):	Two-dimensional LA speckle tracking	64
Figure (19):	Chart showing the sex distribution in the different study groups	76
Figure (20):	Degree of TR in patient 25.	83
Figure (21):	Distribution of degree of MR and TR in the 3 groups of the study	85

List of Figures (Cont...)

Figure No	v. Eitle	Page No.
Figure (22):	Comparing LVESV index, S global LV strain, LA diamet volume, before contraction volume, LA positive and negative strain in responders and non responder and after CRT	er, LA max. volume, min. ve longitudinal conders groups
Figure (23):	Change of degree of MR in patien	nt 1394
Figure (24):	Change in LA diameter in patient	(10)96
Figure (25):	Change in LA longitudinal strain	in patient (10)97
Figure (26):	Scatter plot showing correla percent of LVESV change and patients before and after CRT	E/A ratio in
Figure (27):	Scatter plot showing correla percent of LVESV change a amplitude in patients before and a	and A wave

Introduction

by impaired myocardial performance and progressive activation of neuroendocrine system leading to circulatory insufficiency and congestion. With the increasing age of the population, improved survival of patients with myocardial infarction and reduced mortality from other diseases, incidence of heart failure and the cost of managing patients with heart failure continue to increase. Data suggest that the lifetime risk of developing heart failure is about 20% ^[1].

Cardiac resynchronization therapy (CRT) is now an established treatment for patients with advanced heart failure with prolonged QRS duration. Apart from clinical benefits, improvement of left ventricular (LV) systolic function and associated LV reverse remodeling have been well reported ^[2-7]. Recently, improvement of right ventricular function also has been reported ^[8].

With improvement of LV function and reduction of mitral regurgitation, left atrial (LA) size could be reduced. Furthermore, the pressure unloading effect in the atrium may result in the improvement of atrial function. Atrial function is relatively complex. Apart from active atrial pump function as a direct result of atrial systole, atrial compliance is an important determinant of atrial reservoir and conduit functions ^[9].

With the advancement of echocardiographic technology, it is now possible to assess regional atrial function, in particular by strain (\mathcal{E}) imaging ^[10].