

Ain Shams University Faculty of Science

"Reduction of Radiation-Induced Changes in Biophysical Properties of Erythrocytes"

Thesis Submitted

for

The Degree of Doctor Philosophy of Science in Biophysics

 $\mathbf{B}\mathbf{y}$

Seham Mohammed Ali El-Marakby

Assistant Lecturer, Radiation Physics Department, National Center for Radiation Research and Technology Atomic Energy Authority, Cairo, Egypt

Ain Shams University Faculty of Science

"Reduction of Radiation-Induced Changes in Biophysical Properties of Erythrocytes"

Thesis Submitted for The Degree of Doctor Philosophy of Science in Biophysics

By Seham Mohammed Ali El-Marakby

Assistant Lecturer, Radiation Physics Department, National Center for Radiation Research and Technology Atomic Energy Authority, Cairo, Egypt

Under Supervision Of

Prof. Dr. Abdelsattar M. Sallam,

Prof. Dr. of Biophysics, Physics Department, Faculty of Science, Ain Shams University.

Prof. Dr. Hoda A. Ashry,

Prof. Dr. of Applied Radiation Physics, Radiation Physics Department. (NCRRT), Egyptian Atomic Energy Authority.

Prof. Dr. Omar Sayed Desouky,

Prof. Dr. of Radiation Biophysics, Head of Radiation Physics Department, (NCRRT), Egyptian Atomic Energy Authority.

Prof. Dr. Nabila Sayed Selim,

Prof. Dr. of Radiation Biophysics, Radiation Physics Department. (NCRRT), Egyptian Atomic Energy Authority.

Ain Shams University Faculty of Science 2014

APPROVAL SHEET

Title of the Ph.D. thesis

"Reduction of Radiation-Induced Changes in Biophysical Properties of Erythrocytes"

Name of the candidate

Seham Mohammed Ali El-Marakby

Supervision committee:

(Signature)

Prof. Dr. Abdelsattar M. Sallam,

Prof. Dr. of Biophysics, Physics Department. Faculty of Science, Ain Shams University.

Prof. Dr. Hoda A. Ashry,

Prof. Dr. of Applied Radiation Physics, National Center for Radiation Research (NCRRT), Atomic Energy Authority.

Prof. Dr. Omar Sayed Desouky,

Prof. Dr. of Radiation Biophysics, Head of Radiation Physics Department, National Center for Radiation Research (NCRRT), Atomic Energy Authority.

Prof. Dr. Nabila Sayed Selim,

Prof. Dr. of Radiation Biophysics, Radiation Physics Department. National Center for Radiation Research (NCRRT), Atomic Energy Authority.

> Head of Physics Department, Faculty of Science, Ain Shams University.

Prof. Dr. Sallah El-dine M. El-Bakry

Ph. D. Thesis

Name of the candidate: Seham Mohammed Ali El-Marakby
Title: "Reduction of Radiation-Induced Changes in
Biophysical Properties of Erythrocytes"

Degree: Ph.D. Biophysics.

Supervisors

Prof. Dr. Abdelsattar M. Sallam- Prof. Dr. of Biophysics, Physics Department. Faculty of Science, Ain Shams University.

Prof. Dr. Hoda A. Ashry- Prof. Dr. of Applied Radiation Physics, National Center for Radiation Research (NCRRT), Atomic Energy Authority.

Prof. Dr. Omar Sayed Desouky- Prof. Dr. of Radiation Biophysics, Head of Radiation Physics Department, National Center for Radiation (NCRRT), Atomic Energy Authority.

Prof. Dr. Nabila Sayed Selim- Prof. Dr. of Radiation Biophysics, Radiation Physics Department. National Center for Radiation Research (NCRRT), Atomic Energy Authority.

Examiners:

Prof. Dr. Abdelsattar M. Sallam - Prof. Dr. of Biophysics, Physics Department, Faculty of Science, Ain Shams University.

Prof. Dr. Wafaa M. Khalil - Prof. Dr. of Biophysics, Biophysics Department, Faculty of Science, Cairo University.

Prof. Dr. Guang Ming Zhou - Professor, Director of Department of Space radiobiology-Institute of modern physics, *Chinese* Academy of Sciences

Faculty of Science

Name: Seham Mohammed Ali El-Marakby

Degree: Ph. D.

Department: Physics - Biophysics Group

Faculty: Science

University: Ain-Shams

Graduation Date: 2001- Ain-Shams University

Registration Date: 2008

Date of Award: 2014

Acknowledgement

My deep thanks and gratitude to Professor **Dr. Abd-El-Sattar M. Sallam,** Professor of Biocphysics, physics Department, Faculty of Science, Ain Shams University for his precious guidance. I owe his more than I can express for all the time, he spent in revising every detail, in spite of his busy schedule. In fact all credit goes to his in bringing this study to light. I consider myself fortunate to work under his supervision

It is great honor for me that I take this opportunity to express my sincere appreciation and my deep respect to Professor **Dr. Hoda A.**Ashry, Professor of Applied Radiation Physics, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, for her precious guidance. Without her generous and valuable assistance, this work would lose its value. It is an honor working under his supervision.

I would like to express my deepest thanks, gratitude and profound respect to my honored professor, **Dr. Omar S. Desouky**, Professor of Radiation Biophysics, Head of Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, for his meticulous supervision. His constant encouragement and constructive guidance were of great importance for the initiation, progress and completion of this work.

My special thanks to professor, **Dr. Nabila Sayed Selim**, Professor of Radiation Biophysics, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, who offered me a lot of guidance, continuous encouragement and advice while supervision every step in this work.

Special thanks to all my colleagues at National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority for their help, technical assistance and encouragement.

My deep thanks are also extended to Head and all staff members of Physics Department, Ain Shams University, for their sincere support and assistance.

My appreciation and gratitude go to my parents, may god bless their soul, and all members of my dear family, for their loving support, continuous backing, prayers all through my life, and understanding during the tiring period in which this work was accomplished.

Contents

List of Figures	IV
List of Tables	VIII
List of Abbreviations	IX
Abstract	XI
Chapter I-Introduction and Literature Review	1
1.1 Introduction	1
1.2 Review of literature	3
1.2.1 Effect of gamma radiation on erythrocytes	3
1.2.2 Effect of radioprotectors	7
1.2.2.1 Synthetic Radioprotectors	7
1.2.2.2 Natural Radioprotectors	8
1.2.3 Alpha-Lipoic acid	9
1.2.4 Palladium α-Lipoic Acid Nano-complex (Poly-	10
MVA)	13
Chapter II-Theoritical aspects	18
2.1 Ionizing Radiation	18
2.1.1 Biological effects of ionizing radiation	18
2.1.1.1 Direct Cell Damage	18
2.1.1.2. Indirect Cell Damage	19
2.2 Ionizing Radiation Safety Standards	20
2.2.1 ICRP Basic Radiation Safety Criteria	20
2.2.2 Principles of Radiation Protection	22
2.3 Lipoic Acid	26
2.4 Palladium α-Lipoic Acid Nano-complex (Poly-	
MVA)	27
2.5 Erythrocytes (Red Blood Cells)	29
2.5.1 Erythrocyte membrane	31
2.6 Oxidative Stress	35
2.6.1 Oxidative stress and erythrocyte membrane	
mechanical properties	35

2.6.2 Erythrocytedefense mechanisms	36
2.7 Blood Rheology (Hemorheology)	37
2.8 Electrical Properties of erythrocytes suspension	41
2.9 Scanning Electron Microscope (SEM)	44
Chapter III-Materials and Methods	46
3.1 Materials	46
3.2 Chemicals	47
3.3 Gamma Irradiation	48
3.4 Preparation of blood samples	48
3.5 Morphological Analysis	49
3.6 Spectroscopic measurement of lipid peroxidation and some antioxidant enzymes	49
3.7 Hemoglobin concentration and hematocrit	55
3.8 Mean corpuscular volume (MCV), and mean	
corpuscular hemoglobin concentration (MCHC)	56
3.9 Normal Erythrocytes hemolysis	56
3.10 Erythrocytes osmotic fragility test	57
3.11 Dielectric measurement	59
3.12 Rheological Measurements	64
3.13 Statistical analysis	68
Chapter IV-Results	69
4.1 MorghologicalStudy of erythrocytes	69
4.2 Spectroscopic measurement of lipid peroxidation and some antioxidant enzymes	73
4.3 Hemoglobin concentration, hematocrit and mean corpuscular volume	76
4.4 Normal red blood cells hemolysis	78
4.5 Erythrocytes osmotic fragility test	79
4.6 Electrical Properties of Erythrocytes	80
4.7 Rheological Measurements	87
Chapter V-Discussion	92
5.1 Effect of poly-MVA	94

5.2 Effect of gamma radiation	96
5.3 Radio-prophylactic effect of poly-MVA	100
5.4 Radio-mitigation effect of pol-MVA	102
Summary	104
Conclusion	108
References	110
Arabic summary	

List of Figures

Figure	Title	Page
2.1	Products formed as the result of excitation and ionization of water.	19
	(Scheme 1): ALA isomers structure	26
2.2	Selected biological actions of lipoic acid	27
	Scheme 2 : Palladium Lipoic acid complex monomer (a), and a trimeric (b) (Stahl et al., 2005).	28
2.3	Biconcave shape of erythrocytes.	30
2.4	A cartoon image of the cell membrane showing the two leaflets of the membrane, the integral proteins and the attached cytoskeleton. (<i>Alberts</i> , 2003)	32
2.5	The membrane deformations. (a) Stretching deformation / area compressibility. (b) Bending deformation (c) shear deformation.	34
2.6	Elevated blood viscosity at low shear rates indicates erythrocytes aggregation (rouleaux formation).	38
2.7	Dielectric dispersion curve (α : surface charge polarization, β : interfacial polarization, δ : ionic polarization and γ : atomic polarization).	43

2.8	The relative permittivity, dielectric loss and conductivity of control erythrocytes.	44
2.9	Geometry of SEM	45
3.1	Standard curve of MDA	50
3.2	Standard curve of hydrogen peroxide	54
3.3	Fragility curve of erythrocytes.	58
3.4	The depressed Cole-Cole plot	62
3.5	Electrical equivalent circuit for biological cell.	63
3.6	Schematic diagram of a cone-plate viscometer.	65
3.7	Blood flow curve for control group.	66
4.1	The scanning electro-micrograph of erythrocytes of control (a), irradiated (b), treated with poly-MVA (c) and treated with irradiation (d) of the first mode of administration of poly-MVA (Group A) at different time intervals (1, 7 and 14 days).	70
4.2	The scanning electro-micrograph of erythrocytes of control (a), irradiated (b), treated with poly-MVA (c) and treated with irradiation (d) of the second mode of administration of poly-MVA (Group B) at different time intervals (1, 7 and 14 days).	71

4.3	The scanning electro-micrograph of erythrocytes of control (a), irradiated (b), treated with poly-MVA (c) and treated with irradiation (d) of the third mode of administration of poly-MVA (Group C) at different time intervals (1, 7 and 14 days).	72
4.4	The dispersion of hemolysis of control, irradiated and the three mode of administration of poly-MVA, (a) group A, (b) group B and (c) group C, at different time intervals (1, 7 and 14 days).	81
4.5	The average osmotic fragility of control, irradiated and the three mode of administration of poly-MVA, (a) group A, (b) group B and (c) group C, at different time intervals (1, 7 and 14 days).	82
4.6	The relative permittivity of control, irradiated and the three mode of administration of poly-MVA, (a) group A, (b) group B and (c) group C, at different time intervals (1, 7 and 14 days).	84
4.7	The area under loss peaks of control, irradiated and the three mode of administration of poly-MVA, (a) group A, (b) group B and (c) group C, at different time intervals (1, 7 and 14 days).	85
4.8	The conductivity of control, irradiated and the three mode of administration of poly-MVA, (a) group A, (b) group B and (c) group C, at different time intervals (1, 7 and 14 days).	86

- 4.9 The Bingham viscosity of control, irradiated and the three mode of administration of poly-MVA, (a) group A, (b) group B and (c) group C, at different time intervals (1, 7 and 14 days).
- 4.10 The Yield stress of control, irradiated and the three mode of administration of poly-MVA, (a) group A, (b) group B and (c) group C, at different time intervals (1, 7 and 14 days).
- 4.11 The aggregation index of control, irradiated and the three mode of administration of poly-MVA, (a) group A, (b) group B and (c) group C, at different time intervals (1, 7 and 14 days).

List of Tables

Table	Title	Page
2.1	ICRP 60 Recommended Dose Limits	21
4.1	The MDA concentration of control, treated, irradiated and treated-irradiated groups at different time intervals (1, 7 and 14 days).	74
4.2	The antioxidants content (Glutathione, Catalase and Superoxide dismutase enzymes) in control, treated, irradiated and treated-irradiated groups at different time intervals (1, 7 and 14 days).	75
4.3	The hemoglobin concentration, hematocrit and mean corpuscular volume of control, treated, irradiated and treated-irradiated groups at different time intervals (1, 7 and 14 days).	77
4.4	The percentage of hemolysis and mean corpuscular hemoglobin concentration of erythrocytes for control, treated, irradiated and treated-irradiated groups at different time intervals (1, 7 and 14 days).	=0
4.5	The effective capacitance of control, treated, irradiated and treated-irradiated groups at different time intervals (1, 7 and 14 days).	83