

Ain Shams University Faculty of Engineering Department of Structural Engineering

Behavior of Laboratory Models of Footing Resting on Layers of Swelling Soil and Sand

BY

Marwa Samir Mahrous

B.Sc, Civil Engineering "Structural" (2008)
Ain Shams University - Faculty of Engineering

THESIS

Submitted in partial fulfillment of the requirements for Degree of Master of Science in Civil Engineering Structural Engineering Department

(Geotechnical Engineering)

Supervised By

Prof. Dr. Tahia Abdel Moniem Awad

Professor of Geotechnical Engineering Structural Engineering Department Ain Shams University - Faculty of Engineering

Dr. Hoda Abd El-Hady Ibrahim

Lecturer of Geotechnical Engineering
Structural Engineering Department
Ain Shams University - Faculty of Engineering
Cairo-2015

Pedication

I would like to dedicate this thesis to all members in my family for supporting me and pushing me forward all the time

Ain Shams University Faculty of Engineering

Structural Engineering Department

Abstract of the M.Sc. Thesis submitted by: Marwa Samir Mahrous

Title of Thesis:

Behavior of laboratory models of footing resting on layers of swelling soil and sand

Supervisors:

Prof. Dr. Tahia Abdel Moniem Awad

Assoc. Prof. Hoda Abd El-Hady Ibrahim

Registration date: Examination date:

Abstract

Expansive clay is one of the most detrimental problematic soils in Egypt in recent years due to the urban expansion in arid and semi-arid areas. During the last few decades, some expansive research efforts were carried out to investigate the geotechnical characteristics of these deposits and the swelling mechanisms of shallow foundations resting on such homogenous formation. However, in situ the soil formations of expansive soil are composed of either thick clay layer, layers of expansive clay inter-layered with seams of non-expansive soil; and mainly sand formation with lumps of expansive soil (6th of October city, New Cairo city). The objective of this research is to study the movement of footing resting on multi-layers of swelling clay and sandy soil using laboratory model tests. The effect of particles size of sand layers, number of swelling clay layers, activity of swelling clay, and water flow direction are taken into consideration. The final predicted movements of footings are predicted using empirical and semi-empirical equations. Laboratory tests are performed to study the geotechnical characteristics for three grained of sand used in this study and three types of swelling clay used which are classified using direct and indirect measurements tests. The swelling properties are determined using simple modified Oedometer tests. The footing and ground surface heave are measured and predicted for downward and upward water flow. The measured footing and ground surface heave were compared with that predicted values.

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

APPROVAL SHEET

Behavior of laboratory models of footing resting on layers of swelling soil and sand

by

Marwa Samir Mahrous

Master of Science in Civil Engineering (Structural Engineering)

Faculty of Engineering-Ain Shams University

EXAMINERS COMMITTEE

Name.Title & Affiliation:	Signature
Prof. Dr. Maher Taha Alnmr	
Tenured Professor of Geotechnical Engineering	
Former Head of Civil Engineering Department	
Almonofya University - Faculty of Engineering	
Prof. Dr. Ali Abd Elfattah Ali	
Professor of Geotechnical Engineering	
Structural Engineering Department	
Ain Shams University - Faculty of Engineering	
Prof. Dr. Tahia Abdel Moniem Awad	
Professor of Geotechnical Engineering	
Structural Engineering Department	
Ain Shams University - Faculty of Engineering	
	Date: /

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of

M. Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the

Department of structural Engineering, Ain Shams University from 2009 to

2014.

No part of this thesis has been submitted for a degree or for

qualification at any other university or situation.

Name

: Marwa Samir Mahrous

Signature :

Date

: / /

iii

ACKNOWLEDGMENT

The present work was conducted out at the Department of Structural Engineering, Faculty of Engineering, Ain Shams University.

It was completed under the supervision of Prof. Dr. Tahia Awad, Prof. of Geotechnical Engineering and Dr. Eng. Hoda Abd El-Hady, Lecturer of Geotechnical Engineering, whom I have the pleasure of working under their supervision. I express sincere appreciation for their helpful, generous advice and guidance throughout the period of this research.

I thank my supervisors who have been very instrumental in enriching my thesis. Appreciably I thank them so much for accepting me to be their student and for providing me with the guiding hand of great spirit in carrying out this research.

I would like to thank the soil mechanics laboratory staff for their valuable helps during testing period. A debt of gratitude is to all people who in one way or another contributed ideas directly or indirectly. Because it would end up into long list to mention all the people I am indebted to, I gratefully thank all of them collectively specially Mr Tarek Ahmed.

I would also like to thank Eng.Hassan Ibrahim, the manager of Egyptian company for construction development "ECC" for providing me with any equipment I need.

I would also like to direct my acknowledgement for my company Orascom Road Construction "ORC" for its supporting, and to my manager Eng.Safwat Sobhy for his help and not objecting any absence for me so that I can complete the thesis.

Last, I would like to express my deep feelings towards each member of my family to whom I owe every success in my life. My cordial thanks spread out to my mother and my father for their love, support and guidance throughout my life .I present my sincere gratitude to my fiancé Eng.Karim Hamdy for helping me in writing and accomplishing the thesis

Marwa Samir . 2015

Behavior of Laboratory Models of Footing Resting on Layers of Swelling Soil and Sand

Chapt	ter 1.		1
1.1	Ger	neral	1
1.2	Obj	ectives of this research	3
1.3	Org	ganization of the present work	4
Chapt	ter 2.		5
2.1	Ger	neral	5
2.2	Me	aning of expansive soil or swelling soil	5
2.3	Dar	mage caused for structures resting on expansive soil	8
2.4	Sw	elling mechanism	14
2.5	Dif	ference between non expansive and expansive clay	16
2.6	Ide	ntification of expansive soils	17
2	.6.1	Identification by field inspection	17
2	.6.2	Identification by indirect techniques	17
2	.6.3	Identification by direct techniques	39
2	.6.4	Combination techniques	46
2.7	Hea	ave prediction	47
2	.7.1	Semi-empirical methods	47
2	.7.2	Empirical methods	62
2.8	Tre	atment of expansive soils	70
2	.8.1	Miscellaneous treatments	72
2	.8.2	Hydraulic barriers	79
2	.8.3	Chemical soil treatments	80
2	.8.4	Factors caused by soil particles	85
2	.8.5	Factors caused by environmental conditions	88
2	.8.6	Stress conditions affecting swelling potential	89

Chapter 3		90
3.1 General		90
3.2 Properties of s	sand used	90
3.3 Properties of I	Bentonite used	91
3.3.1 Bentonite	e properties using indirect tests	91
3.3.2 Bentonite	e properties using direct tests	92
3.4 Laboratory mo	odel test program	94
3.5 Testing prepar	ration	96
3.5.1 Testing n	mould	96
3.5.2 Loading	and measuring systems.	97
3.6 Testing proceed	dure	98
3.7 Test results an	nd discussions	99
3.7.1 Measured	d heave	99
3.8 Predicted heav	ve results	122
3.8.1 Using em	npirical equation	122
3.8.2 Using ser	mi-empirical equation	128
3.9 Comparison b	between measured and predicted heave results	135
3.9.1 Using em	npirical equation	135
3.9.2 Using ser	mi-empirical equations	137
Chapter 4		140
4.1 Summary		140
4.2 Conclusions		141
4.2.1 Measured	d Movement Results	141
4.2.2 Predicted	d heave results	142
4.2.3 Comparis	son between measured and predicted heave results	s 142
4.3 Recommended	d for future studies	143
REFERENCES		144

List of Figures

FIGURE 2-1: IMPACT OF PLANT EVAPOTRANSPIRATION ON CLAY VOLUME
AND SHRINK-SWELL [KELLER, 2008]
FIGURE 2-2: EXPANSIVE SOIL WITH "POPCORN" TEXTURE AND CRACKS
HTTP://WWW.SUREVOID.COM/, 2006)
FIGURE 2-3: COMMON TYPE OF CRACKS IN BUILDINGS WITH SHALLOW
FOUNDATIONS, (ELARABI, 1989).
FIGURE 2-4: DIFFERENTIAL HEAVE DISTURBANCE
FIGURE 2-5: DOME SHAPE HAVE DISTURBANCE (ELRAWAS, 2006)
FIGURE 2-6: REPRESENTATION OF WATER MOLECULES LAYERS ABSORBED
AND HELD BY HIGH POTENTIAL FOR CLAY PARTICLES, (ELRAWAS, 2006).
FIGURE 2-7: FIRST STAGE, (3-D) VOLUMETRIC EXPANSIONS (TABOADA, 2003) 15
FIGURE 2-8: SECOND STAGE, (1-D) VOLUMETRIC EXPANSIONS (TABOADA,
2003)
FIGURE 2-9: CLAY EXPANSION
FIGURE 2-10: SCHEMATIC REPRESENTATION OF THE STRUCTURE OF
SMECTITE MINERALS"MONTMORILLONITES" (COLMENARES, 2002) 16
FIGURE 2-11: SWELL POTENTIAL AS A FUNCTION OF SOIL PLASTICITY INDEX21
FIGURE 2-12: PLOT OF CLAY MINERALS ON CASAGRANDE'S CHART (LUCIAN,
2006)
FIGURE 2-13: SOIL CLASSIFICATION CHART (SKEMPTON, 1953)
FIGURE 2-14: SWELL POTENTIAL AS FUNCTION OF COLLOIDS CONTENT AND
ACTIVITY (SEED ET AL., 1960)
FIGURE 2-15: SOIL SWELL POTENTIAL BASED ON SIZE FRACTION AND
ACTIVITY (SEED, 1962A)
FIGURE 2-16: POTENTIAL SEVERITY OF VOLUME CHANGE FOR CLAY SOILS
(VAN DER MERWE, 1964)
FIGURE 2-17: CLAY MINERALOGY AS A FUNCTION OF ACTIVITY AND CATION
EXCHANGE CAPACITY (HOLT, 1969)
FIGURE 2-18: EXPANSION POTENTIAL AS A FUNCTION OF CEAC AND AC FROM
NELSON AND MILLER, 1992
FIGURE 2-19: SWELL POTENTIAL AS A FUNCTION OF COLLOIDS CONTENT AND
COLE (MCKEEN AND HAMBERG, 1981)
FIGURE 2-20: SOIL EXPANSIVENESS AND COLE REGIONS AS A FUNCTION OF
ACTIVITY AND CATION EXCHANGE CAPACITY 35
FIGURE 2-21: EXAMPLE OF THE RELATIONSHIP BETWEEN SOIL SUCTION 37

FIGURE 2-22: EXAMPLE OF THE RELATIONSHIP BETWEEN VOLUME STRAIN	
AND SOIL SUCTION (MCKEEN, 1992)	. 38
FIGURE 2-23: RELATION OF SOIL WATER CHARACTERISTIC CURVES, SOIL	
PLASTICITY AND PERCENT FINES (ZAPATA, ET AL., 2000)	. 38
FIGURE 2-24: RELATION OF SUCTION COMPRESSION INDEX, CH, TO THE SLO	PE
OF THE SOIL WATER CHARACTERISTIC CURVE (MCKEEN, 1992)	. 39
FIGURE 2-25: TYPICAL CONSTANT VOLUME SWELL TEST RESULTS (AFTER	
PORTER AND NELSON, 1980)	. 40
FIGURE 2-26: DOUBLE OEDOMETER TEST RESULTS, INITIALLY MOIST SAMP	LE
PAIR	. 41
FIGURE 2-27: FREE SWELL UNDER LOAD IN THE OEDOMETER (AFTER	
FREDLUND, 1983)	. 43
FIGURE 2-28: SIMPLIFIED OEDOMETER TEST ANALYSIS (AFTER JENNINGS ET	Γ
AL., 1973)	. 43
FIGURE 2-29: TYPICAL PLOT OF CONSOLIDATION - SWELL TEST RESULTS	
(AFTER JENNINGS ET AL., 1973)	. 44
FIGURE 2-30: LABORATORY RELATIONSHIP BETWEEN VOID RATIO AND	
EFFECTIVE PRESSURE (AFTER RICHARD ET AL., 1969)	. 50
FIGURE 2-31: IDEALIZED THREE DIMENSIONAL LOADING SURFACES FOR	
UNSATURATED SOILS IN TERMS OF VOID RATIO VERSUS INDEPENTED	
STRESS (AFTER FREDLUND, 1983)	. 51
FIGURE 2-32: CORRECTION OF CONSTANT VOLUME SWELL TEST DATA FOR	
SAMPLE DISTURBANCE (AFTER FREDLUND, 1983)	. 51
FIGURE 2-33: IDEALIZED AND ACTUAL VERSUS ANALYSIS STRESS PATH FOI	R
PREDICTION BASED ON CONSTANT VOLUME	. 52
FIGURE 2-34: VOID RATIO VERSUS WATER CONTENT (AFTER HAMBERG, 198.	5)
	. 57
FIGURE 2-35: IDEALIZED MOISTURE BOUNDARY PROFILE FOR THE PIERRE	
SHALE, FORT COLLINS (HAMBERG, 1985)	. 57
FIGURE 2-36 RELATIONSHIPS FOR DETERMINING (A) PLASTICITY INDEX (P.I.)
AND (B) REDUCTION FACTOR (P) FOR VAN DER MERWE'S EMPIRICAL	
HEAVE PREDICTION METHODS,1964	. 63
FIGURE 2-37: SUBEXCAVATING OR REPLACING THE EXPANSIVE SOIL BY	
CUSHIONS	
FIGURE 2-38: LABORATORY MODEL TEST SET UP (AFTER AWAD, 2005)	
FIGURE 2-43: THE VISUAL EFFECT OF LIME ADDITION	. 83
FIGURE 2-44: STRUCTURE OF THE MAIN CLAY MINERALS: (A) KAOLINITE, (I	B)
ILLITE AND (C) MONTMORILLONITE, BASED ON COMBINED SHEETS	. 86

FIGURE 2-45: THE ZONE OF INFLUENCE OF SOME COMMON TREES
FIGURE 3-1 CLASSIFICATION OF EXPANSIVE SOIL SAMPLES ACCORDING TO
SEED ET AL, 1962 MODIFIED BY CARTER AND BENTELY, 199192
FIGURE 3-2: RESULTS OF THREE BENTONITE TYPES USING SIMPLE MODIFIED
OEDOMETER TEST ACCORDING TO JENNING ET AL., 1973 93
FIGURE 3-3: EXPERIMENTAL SET UP FOR MODEL TEST
FIGURE 3-4: FOOTING LAYOUT PLAN95
FIGURE 3-5: TESTING MOULD97
FIGURE 3-6: LOADING SYSTEM97
FIGURE 3-7: FOOTING MEASURED MOVEMENT VS. LOG TIME FOR MEDIUM
COARSE SAND, FINE MEDIUM SAND AND FINE SAND99
FIGURE 3-8: GROUND SURFACE MEASURED MOVEMENT VS. LOG TIME FOR
MEDIUM COARSE SAND, FINE MEDIUM SAND AND FINE SAND 100
FIGURE 3-9: FINAL MEASURED MOISTURE CONTENT VS. DEPTH FOR MEDIUM
COARSE SAND, FINE MEDIUM SAND AND FINE SAND UNDER FOOTING 101
FIGURE 3-10: FINAL MEASURED MOISTURE CONTENT VS. DEPTH FOR MEDIUM
COARSE SAND, FINE MEDIUM SAND AND FINE SAND UNDER GROUND
SURFACE
FIGURE 3-11: FINAL MEASURED MOVEMENT OF FOOTING AND GROUND
SURFACE VS. SIZE OF SAND PARTICLES D ₁₀ &D ₆₀
FIGURE 3-12: FINAL MEASURED MOISTURE CONTENT UNDER FOOTING AND
GROUND SURFACE AT DEPTH -1.00CM VS. SIZE OF SAND PARTICLES $D_{10}\&D_{60}$
FIGURE 3-13: FOOTING MEASURED MOVEMENT VS. LOG TIME
FIGURE 3-14: GROUND SURFACE MEASURED MOVEMENT VS. LOG TIME 105
FIGURE 3-15: FINAL MEASURED MOISTURE CONTENT VS. DEPTH
FIGURE 3-16: FINAL MEASURED MOISTURE CONTENT VS. DEPTH
FIGURE 3-17: FINAL MEASURED MOUSTURE CONTENT VS. DEFTIT
SURFACE VS. NUMBER OF SWELLING CLAY LAYERS 108
FIGURE 3-18: FINAL MEASURED MOISTURE CONTENT UNDER FOOTING AND
GROUND SURFACE AT DEPTH -1.00CM VS. NUMBER OF SWELLING CLAY
LAYERS
FIGURE 3-19: FOOTING MEASURED MOVEMENT VS. LOG TIME
FIGURE 3-20: GROUND SURFACE MEASURED MOVEMENT VS. LOG TIME 111
FIGURE 3-21: FINAL MEASURED MOISTURE CONTENT VS. DEPTH 112
FIGURE 3-22: FINAL MEASURED MOISTURE CONTENT VS. DEPTH
FIGURE 3-23: FINAL MEASURED MOVEMENT OF FOOTING AND GROUND
SURFACE VS. BENTONITE ACTIVITY

FIGURE 3-24: FINAL MEASURED MOISTURE CONTENT UNDER FOOTING AND	
GROUND SURFACE AT DEPTH -1.00CM VS. BENTONITE ACTIVITY 11	.4
FIGURE 3-25: FOOTING MEASURED MOVEMENT VS. LOG TIME FOR WATER	
FLOW	.7
FIGURE 3-26: GROUND SURFACE MEASURED MOVEMENT VS. LOG TIME FOR	
WATER FLOW 11	.7
FIGURE 3-27: FINAL MEASURED MOISTURE CONTENT VS. DEPTH FOR	
DOWNWARD AND UPWARD WATER FLOW UNDER FOOTING 11	9
FIGURE 3-28: FINAL MEASURED MOISTURE CONTENT VS. DEPTH FOR	
DOWNWARD AND UPWARD WATER FLOW UNDER GROUND SURFACE . 11	.9
FIGURE 3-29: FINAL MEASURED MOVEMENT OF FOOTING AND GROUND	
SURFACE VS. WATER FLOW 12	0
FIGURE 3-30: FINAL MEASURED MOISTURE CONTENT UNDER FOOTING AND	
GROUND SURFACE AT DEPTH -1.00CM VS. WATER FLOW 12	1
FIGURE 3-31: FOOTING MEASURED AND PREDICTED FINAL MOVEMENT USING	j
EMPIRICAL EQUATIONS VS. SIZE OF SAND PARTICLES12	4
FIGURE 3-32: GROUND SURFACE MEASURED AND PREDICTED FINAL	
MOVEMENT USING EMPIRICAL EQUATIONS VS. SIZE OF SAND PARTICLES	
	4
FIGURE 3-33: FOOTING MEASURED AND PREDICTED FINAL MOVEMENT USING	j
EMPIRICAL EQUATIONS VS. NO. OF SWELLING CLAY LAYERS 12	5
FIGURE 3-34: GROUND SURFACE MEASURED AND PREDICTED FINAL	
MOVEMENT USING EMPIRICAL EQUATIONS VS. NO. OF SWELLING CLAY	
LAYERS	5
FIGURE 3-35: FOOTING MEASURED AND PREDICTED FINAL MOVEMENT USING	
EMPIRICAL EQUATIONS VS. BENTONITE ACTIVITY 12	6
FIGURE 3-36: GROUND SURFACE MEASURED AND PREDICTED FINAL	
MOVEMENT USING EMPIRICAL EQUATIONS VS. BENTONITE ACTIVITY 12	6
FIGURE 3-37: FOOTING MEASURED AND PREDICTED FINAL MOVEMENT USING	
EMPIRICAL EQUATIONS VS. WATER FLOW DIRECTION 12	7
FIGURE 3-38: GROUND SURFACE MEASURED AND PREDICTED FINAL	
MOVEMENT USING EMPIRICAL EQUATIONS VS. WATER FLOW DIRECTION 12	
FIGURE 3-39: FOOTING MEASURED AND PREDICTED FINAL MOVEMENT USING	
SEMI-EMPIRICAL EQUATIONS VS. SIZE OF SAND PARTICLES 13	0
FIGURE 3-40: GROUND SURFACE MEASURED AND PREDICTED FINAL	
MOVEMENT USING SEMI-EMPIRICAL EQUATIONS VS. SIZE OF SAND	
PARTICLES	0

FIGURE 3-41: FOOTING MEASURED AND PREDICTED FINAL MOVEMENT USING
SEMI-EMPIRICAL EQUATIONS VS. NO. OF SWELLING CLAY LAYERS 131
FIGURE 3-42: GROUND SURFACE MEASURED AND PREDICTED FINAL
MOVEMENT USING SEMI-EMPIRICAL EQUATIONS ${f VS}$. BENTONITE NO. OF
SWELLING CLAY LAYERS
FIGURE 3-43: FOOTING MEASURED AND PREDICTED FINAL MOVEMENT USING
SEMI-EMPIRICAL EQUATIONS VS. SWELLING CLAY ACTIVITY 132
FIGURE 3-44: GROUND SURFACE MEASURED AND PREDICTED FINAL
MOVEMENT USING SEMI-EMPIRICAL EQUATIONS VS. SWELLING CLAY
ACTIVITY
FIGURE 3-45: FOOTING MEASURED AND PREDICTED FINAL MOVEMENT USING
SEMI-EMPIRICAL EQUATIONS VS. WATER FLOW
FIGURE 3-46: GROUND SURFACE MEASURED AND PREDICTED FINAL
MOVEMENT USING SEMI-EMPIRICAL EQUATIONS VS. WATER FLOW 133
List of Dhotos
List of Photos
List of Photos PHOTO 2-1: RESIDENTIAL DIVE WAY DAMAGED BY EXPANSIVE SOIL
PHOTO 2-1: RESIDENTIAL DIVE WAY DAMAGED BY EXPANSIVE SOIL
PHOTO 2-1: RESIDENTIAL DIVE WAY DAMAGED BY EXPANSIVE SOIL
PHOTO 2-1: RESIDENTIAL DIVE WAY DAMAGED BY EXPANSIVE SOIL
PHOTO 2-1: RESIDENTIAL DIVE WAY DAMAGED BY EXPANSIVE SOIL
PHOTO 2-1: RESIDENTIAL DIVE WAY DAMAGED BY EXPANSIVE SOIL
PHOTO 2-1: RESIDENTIAL DIVE WAY DAMAGED BY EXPANSIVE SOIL
PHOTO 2-1: RESIDENTIAL DIVE WAY DAMAGED BY EXPANSIVE SOIL
PHOTO 2-1: RESIDENTIAL DIVE WAY DAMAGED BY EXPANSIVE SOIL
PHOTO 2-1: RESIDENTIAL DIVE WAY DAMAGED BY EXPANSIVE SOIL
PHOTO 2-1: RESIDENTIAL DIVE WAY DAMAGED BY EXPANSIVE SOIL