Zinc Status in Egyptian Children With Pneumonia

Thesis

Submitted in partial fulfillment of Master degree in Pediatrics

By

Mohammed Abdo Abdo Daba

(M.B.B.cH)

Supervisors

Professor Dr. Mervat Haroun

Professor of Pediatrics, Faculty of Medicine, Cairo University

Professor Dr. Mona Salem Khaleel

Professor of Clinical Pathology, Faculty of Medicine, Cairo University

Dr. Mohammed Abdel Fattah Abdel Motey

Lecturer of Pediatrics, Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2008

بسم الله الرحمن الرحيم (هالم السبحانك لا علم لها إلى المتعلد المالي المتعلد المالي العلم المتعلد المتعلد العلم العلم العلم المتعلد ال

ABSTRACT

A retrospective case-control study was conducted in Cairo University Pediatric Hospital (CUPH), from June to December 2007, to compare serum zinc levels in 40 well-nourished Egyptian children, aged 3 to 54 months, admitted with the diagnosis of pneumonia, and 12 age- and sexmatched healthy controls. There was no significant difference of serum zinc levels between cases and matched controls Mean serum zinc level was 1.05 ± 0.36 mg/L in cases, and was 1.26 ± 0.50 mg/L in controls (p > 0.05). The study recommends further investigation on a larger scale to determine the magnitude of the problem in Egypt.

Key words: Pneumonia, zinc, children.

ACKNOWLEDGEMENT

First of all, I thank **GOD** to whom I relate any success I have reached & might reach in the future.

I am greatly honoured to express my sincere gratitude & appreciation to *Professor Dr.Mervat Haroun, Professor of Pediatrics, Cairo University* for her meticulous supervision, loyal encouragement & valuable advice throughout the work.

I would like to express my deepest appreciation to *Professor Dr. Mona Salim, Professor of Clinical Pathology, Cairo University* for her remarkable suggestions & close supervision, which were behind the fruitful outcome of the practical part of this work.

I would like to express my appreciation to *Dr. Mohammed Abdel Fattah*, *Lecturer of Pediatrics, Cairo University* for his sincere help, enthusiastic encouragement and kind supervision throughout the work.

Mohammed Abdo

List of tables

Table		Page
Table (1)	15 countries accounting for three quarters of childhood pneumonia cases worldwide	4
Table (2)	Classification of pneumonia by infectious agent	6
Table (3)	Classification of pneumonia by site of infection	6
Table (4)	Classification of pneumonia according to likely origin and immune status	7
Table (5)	Causes of Community-Acquired Pneumonia by Age Group	7
Table (6)	World Health Organization Age-Specific Criteria for Tachypnea	11
Table (7)	Features of viral lower respiratory infections (LRTI)	13
Table (8)	Features of Bacterial lower respiratory infections(LRTI)	14
Table (9)	Features of Mycoplasma lower respiratory infections(LRTI)	14
Table (10)	Clinical Assessment of Community-Acquired Pneumonia in Children	17
Table (11)	Investigations in children hospitalized for pneumonia	23
Table (12)	Complications of pneumonia	24
Table (13)	Children at high risk of invasive pneumococcal infection	31
Table (14)	Recommendations for pneumococcal immunization with PCV7 or 23PS vaccine children at high risk of pneumococcal disease	32
Table (15)	Infection control precautions for specific organisms	34
Table (16)	Indications for hospital admission	35
Table (17)	Therapeutic Management of Community-Acquired Pneumonia	46
Table (18)	Etiologic Factors for Recurrent or Persistent Pneumonia	50
Table (19)	Zinc Content of Zinc-Rich Foods	55
Table (20)	Dietary determinants of zinc bioavailability	56
Table (21)	Recommended dietary allowance (RDA) by lifestage group and gender	56

Table		Page
Table (22)	Compounds facilitating zinc absorption	58
Table (23)	Factors associated with decreased zinc absorption	58
Table (24)	Correlation between zinc concentration and cells of innate immunity	64
Table (25)	Correlation between zinc concentration and cells of specific immunity	64
Table (26)	Suggested lower cutoffs for serum zinc concentration (mg/L) by age group, sex, time of day and time since last meal Time of day	73
Table (27)	Statistical analysis of age, duration, HR, RR, Temp and Hb in cases and controls.	84
Table (28)	Statistical analysis of TLC, neutrophils, staff: segmented ratio, lymphocytes,eosinophils, basophils in cases and controls	87
Table (29)	Statistical analysis of PLT, ESR, PaO2, PaCO2, SaO2, Zinc in cases and controls.	88
Table (30)	Sex by Group	91
Table (31)	Residence by Group	92
Table (32)	Fever by Group	92
Table (33)	Cough by Group	92
Table (34)	Expectoration by Group	93
Table (35)	Hemoptysis by Group	93
Table (36)	Dyspnea by Group	93
Table (37)	Cyanosis by Group	94
Table (38)	Previous hospitalization by Group	94
Table (39)	CXR by Group	94
Table (40)	Spearman's correlation coefficients in cases group	95

List of figures

Figure		Page
Figure (1)	Comparison of the mean age of cases and controls	84
Figure (2)	Comparison of the mean heart rate of cases and controls	85
Figure (3)	Comparison of the mean respiratory rate of cases and controls	85
Figure (4)	Comparison of the mean temperature of cases and controls	86
Figure (5)	Comparison of the mean hemoglobin of cases and controls	86
Figure (6)	Comparison of the mean total leucocytic count of cases and controls	87
Figure (7)	Comparison of partial pressure of oxygen (PaO2) of cases and controls	88
Figure (8)	Comparison of partial pressure of carbon dioxide (PaCO2) of cases and controls	89
Figure (9)	Comparison of oxygen saturation of cases and controls	89
Figure (10)	Comparison of serum zinc level of cases and controls	90
Figure (11)	Comparison of the sex between cases and controls	91

List of abbreviations

AAP: American Academy of Pediatrics

AE: Acrodermatitis enteropathica

AR: Autosomal recessive

AOM: Acute Otitis Media

ALRTI: Acute lower respiratory tract infection

AFB: Acid fast bacillus

ASS: Atomic absorption spectroscopy

BAL: Bronchoalveolar lavage

C : Cytokine

CBC: Complete blood count

C. pneumoniae: Chlamydia pneumoniae

CAP: Community acquired pneumonia

CMV : Cytomegalovirus

CRP : C-reactive protein

CT : Computerized Tomography

CXR : Chest x-ray

DPT: Diphtheria-Pertussis-Tetanus toxoid

ET: Endotracheal

ELISA: Enzyme Linked Immunosorbant Assay

FiO2: Fractional concentration of inspired oxygen

FDA: Food and Drug Administration

Hib: Hemophilus influenzae type b

HIV: Human immunodeficiency virus

Hmpv: Human metapneumovirus

HBoV: Human bocavirus

HCoV-NL63: Human coronavirus-NL63

IM: Intramuscular

IV: Intravenous

IMCI: Integrated Management of Childhood Illness

IZiNCG: International Zinc Nutrition Consultative Group

IPD: Invasive pneumococcal disease

LBW: Low birth weight

M. pneumoniae : Mycoplasma pneumoniae

MRSA: Methicillin-resistant staphylococcus aureus

NK: Natural killer

NPA: Nasopharyngeal aspirate

NTHI: Nontypable Hemophilus influenzae

NBT: Nitroblue Tetrazolium Test

NVTs : Nonvaccine serotypes

OPAT : Outpatient parenteral antimicrobial therapy

p:p value

PaO2: partial pressure of oxygen

PaCO2: partial pressure of carbon dioxide

PVL: Panton-Valentine Leukocidin

PCV7: 7-valent Pneumococcal conjugate vaccine

PCR : Polymerase Chain Reaction

PCP: Pneumocystis carinii pneumonia

PICU: Pediatric Intensive Care Unit

23PS: 23-valent pneumococcal polysaccharide

RDA: Recommended Dietary Allowance

SD: Standard deviation

RSV: Respiratory Syncytial Virus

SaO2 : Oxygen saturation

S. aureus: Staphylococcus aureus

SIADH: syndrome of inappropriate Antidiuretic Hormone Secretion

TB: Tuberculosis

TH: Thelper

UNICEF: United Nations Children's Fund

URI: Upper respiratory tract infections

USA: United States of America

VEGF: Vascular Endothelial Growth Factor

WHO: World Health Organization

WBC: White blood cell

Table of contents

Content	Page
Introduction & aim of the work	1
Review of literature:	3
Part I: Pneumonia	3
Part II: Zinc	54
Patients & Methods	78
Results	82
Discussion	96
Conclusion & recommendations	104
Summary	105
References	106
Appendix	147
Arabic summary	154

INTRODUCTION

Infections of respiratory tract are very common and associated with significant morbidity and mortality. Infections of lower respiratory tract are related to infections below the larynx and include bronchial infections and various forms of pneumonia (MacFurlane and Thomson, 2003).

The increased susceptibility to pneumonia particularly in malnourished children of developing countries is postulated to be due to reduction in cellular immunity (**Zaman et al., 1996**). One of the reasons for reduced immunological competence in malnourished children may be zinc deficiency (**Zalewski, 2006**). However, relatively well-nourished children of developing countries also suffer from pneumonia and it is possible that they have impaired immunity due to zinc deficiency.

The dietary zinc (Zn) plays essential roles in cellular metabolism and gene expression. Critical to these processes are the mechanisms that regulate Zn homeostasis in cells and tissues. Recently, the first images of sub-cellular pools of Zn in airway epithelium have been obtained (**Brooks et al., 2004**).

Zinc deficiency results in enhanced oxidative damage in the airways by causing infiltration of inflammatory cells and increased superoxide and nitric oxide production. When zinc deficiency occurs in conjunction with acute lung injury or asthma, a more intense inflammation is produced (**Tudor et al., 2005**).

HYPOTHESIS:

Zinc deficiency has been linked to a group of respiratory disorders including pneumonia.

AIM OF THE WORK:

The present study was carried out to study this hypothesis via estimation of serum zinc levels in well nourished Egyptian children suffering from pneumonia.

