

EFFECT OF DIFFERENT SURFACE TREATMENTS ON RETENTION AND MICROLEAKAGE OF FIBER-REINFORCED COMPOSITE POSTS

Thesis submitted to

The Faculty of Oral and Dental Medicine

Cairo University

For partial fulfillment of the Requirements of Master Degree in

Fixed prosthodontics

By

Noha Abdulla Mahmoud Zeid

B.D.S. (2003)

Misr University for Science and Technology

Faculty of Oral and Dental Medicine
Cairo University
2010

Supervisors

Dr. Sahar Gamal El Din Zaki

Assistant Professor of Fixed prothodontics

Faculty of Oral and Dental Medicine

Cairo University

Prof.Dr. Ashraf Hussien Sherif

Professor of Fixed prothodontics

Faculty of Oral and Dental Medicine

Cairo University

Dr. Hanaa Ibraheem Sallam

Lecturer of Fixed prothodontics

Faculty of Oral and Dental Medicine

Cairo University

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the only kind and most merciful, who guided and aided me to bring this work to light.

I'm greatly honored to express my deepest gratitude and sincere appreciation to **Dr. Sahar Gamal El Din Zaki**, Assistant Professor of Fixed prosthdontics, Faculty of Oral and Dental Medicine, Cairo University, for her generous help, supervision and valuable discussion during the entire course of the work.

I would like to express my deep gratitude and honor to **Prof. Dr. Ashraf Hussien Sherif,** Professor of Fixed prosthdontics, Faculty of Oral and Dental Medicine, Cairo University, for his continuous support and encouragement throughout this work. His valuable suggestions and guidance are highly appreciated.

Many thanks and appreciation to **Dr. Hanaa Ibraheem Sallam** lecturer of Fixed prosthdontics, Faculty of Oral and Dental Medicine, Cairo University, for her great help, support and extensive patience during the different phases of this work.

I'm greatly thankful to **Prof. Dr. Ihab El-Sayed Mosleh**, Professor and Head of Fixed prosthodontic department, Faculty of Oral and Dental Medicine, Cairo University, for his encouragement throughout this work.

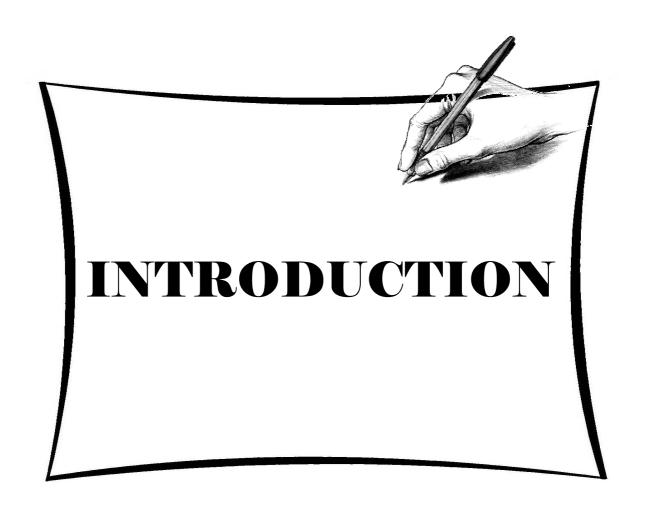
I would like to thank **Prof. Dr. Ashraf Hassan Mokhtar**, Professor and Former Head of Fixed prosthodontic department, Faculty of Oral and Dental Medicine, Cairo University, for his help and support to complete this work.

Finally, this work couldn't be possible without the extraordinary help of my family.

LIST OF CONTENTS

	Page NO.
INTRODUCTION	. 1
REVIEW OF LITERATURE	. 3
AIM OF THE STYDY	. 30
MATERIALS AND METHODS	. 31
RESULTS	. 64
DISCUSSION	. 98
SUMMARY	. 109
CONCOLUSIONS	. 112
REFERENCES	. 113
ARABIC SUMMARY	

LIST OF TABLES


Table NO.	Title	Page NO.
(1)	Materials used in this study	31
(2)	Surface treatment materials	33
(3)	Samples grouping for fiber reinforced composite post	37
(4)	Means, standard deviation (SD) and results of push out test values in Mega Pascal (MPa) of the tested groups	65
(5)	Tukey's pair-wise test for comparison between group I (Control) and group II (Silane)	68
(6)	Tukey's pair-wise test for comparison between group group I (Control) and III (Etching)	70
(7)	Tukey's pair-wise test for comparison between group I (Control group) and group IV (Sandblasting)	72
(8)	Tukey's pair-wise test for comparison between group I (Control) and group V (Etching+ Silane)	74
(9)	Tukey's pair-wise test for comparison between group I (Control) and group VI (Sandblasting + Silane)	76
(10)	Mean and standard deviation (SD) of dye penetration values in millimeters (mm) for the tested groups	83
(11)	Tukey's pair-wise test for comparison between group I (Control) and group II (Silane)	86
(12)	Tukey's pair-wise test for comparison between group I (Control) and group III (Etching)	88
(13)	Tukey's pair-wise test for comparison between group I (Control) and group IV (Sandblasting)	90
(14)	Tukey's pair-wise test for comparison between group I (Control) and group V (Etching + Silane)	92
(15)	Tukey's pair-wise test for comparison between group I(Control) and group VI(Sandblasting + Silane)	94

LIST OF FIGURES

Fig. NO.	Title	Page NO.
(1)	Prefabricated Rely X Fiber post	32
(2)	Self-Adhesive Resin Cement	32
(3)	RelyX Ceramic Primer	34
(4)	Hydrofluoric acid (HF) etching gel	34
(5)	Centralizing device.	39
(6)	K3 NiTi files	41
(7)	X smart motor	41
(8)	Penetration drill	43
(9)	Milling machine	43
(10)	Post- space drilling using milling machine.	44
(11)	Post space drill	44
(12)	Post drill adjusted to desired length with rubber stopper	45
(13)	Root inside acrylic resin block former after post space drilling	45
(14)	Sandblasting- device and electric device	48
(15)	Schematic diagram for the components of the device used during sandblasting	48
(16)	Sandblasting machine	51
(17)	Capsule activator	54
(18)	Amalgamator adjusted to required mixing time	54
(19)	Capsule applier	55
(20)	Thermocycling machine	55
(21)	Push out test using Universal testing machine.	57
(22)	Schematic diagram of the push-out test	57
(23)	Universal Testing Machine	58

(24)	Plastic cones with 2% methylene blue and roots	61
(25)	Longitudinally sectioned tooth	61
(26)	Digital Microscope	62
(27)	Histogram representing the means of push out bond strength values of the tested groups	66
(28)	Histogram representing mean push out bond strength of group I (Control) and group II (Silane)	68
(29)	Histogram representing mean push out bond strength of group I (Control) and group III (Etching)	70
(30)	Histogram representing mean push out bond strength of group I (Control group) and group IV (Sandblasting)	72
(31)	Histogram representing mean push out bond strength of group I (Control group) and group V(Etching + Silane)	74
(32)	Histogram representing mean push out bond strength of group I (Control) and group VI (Sandblasting + Silane)	76
(33)	(SEM) of non treated post (control group) X800	78
(34)	(SEM) of silanized post group at X800	78
(35)	(SEM) of hydrofluoric acid etched post at X800	79
(36)	(SEM) of sandblasted post at X800.	79
(37)	(SEM) of hydrofluoric acid etched and silanized post at X800	81
(38)	(SEM) of sandblasted and silanized post at X800	81
(39)	Histogram representing mean of dye penetration values in millimeters (mm) of the tested groups	84
(40)	Histogram representing mean dye penetration values of group I (Control) and group II (Silane)	86
(41)	Histogram representing mean dye penetration values of group I (Control) and group III (Etching)	88
(42)	Histogram representing mean dye penetration value of group I (Control) and group IV(Sandblasting)	90
(43)	Histogram representing mean dye penetration value of group I(Control) and group V(Etching + Silane)	92

(44)	Histogram representing mean dye penetration value of group I (Control) and group VI (Sandblasting + Silane)	94
(45)	Depth of dye penetration of untreated post (Group I) control group	95
(46)	Depth of dye penetration of silanized post (Group II)	95
(47)	Depth of dye penetration of acid etched post (Group III)	96
(48)	Depth of dye penetration of sandblasted post (Group IV)	96
(49)	Depth of dye penetration of acid etched and silanized post (Group V).	97
(50)	Depth of dye penetration of sandblasted and silanized post (Group VI)	97

Endodontically treated teeth are known to present a higher risk of biomechanical failure than vital teeth, as in most cases the remaining tooth structure will be less than in vital teeth because the most frequently occurring reason for endodontic treatment needs is deep caries. Additionally, further loss of tooth structure takes place during the preparation of the access cavity and canal preparation.

Posts are generally indicated to restore pulpless teeth, available prefabricated posts were traditionally made of metal, and their use resulted in complex combinations of materials (dentin, metal posts, cements, and core materials) with different degrees of stiffness⁽¹⁾.

The choice of an appropriate restoration for endodontically treated teeth is guided by strength and esthetics. Newer tooth-colored posts have improved the esthetics of teeth restored with posts and cores. (2)

Prefabricated fiber-reinforced composite (FRC) posts have been used since the beginning of the 90s. The use of fiber posts to restore teeth with excessive loss of coronal structure is gaining widespread acceptance with dental clinicians. The presence of fibers is a further advantage because fibers distribute stress on a wider surface area, remarkably increasing the load threshold at which the material begins to show microfractures. Among the properties of fiber-reinforced materials; high impact resistance, attenuation and softening of vibrations, shock absorption and increased fatigue resistance ⁽³⁾.

Several characteristics of these posts have contributed to their popularity. They have comparable elastic properties to dentin, inducing a stress field similar to that of natural tooth. This results in a reduction in the incidence of root fractures, demonstrated in both in vitro and clinical studies. Moreover, the chemical nature of the posts allows them to be bonded to canal walls with adhesive systems in combination with resin cements, avoiding friction between dentin walls and the post, and reinforcing the remaining tooth structure. (4)

Retention of fiber-reinforced composite (FRC) posts within root canals is affected by several factors such as: type of post, its adaptation into the post space, and type of adhesive. Post cementation into a root canal is still a concern, as confirmed by clinically observed failures.

Surface treatments are common methods for improving the general adhesion properties of a material, by facilitating chemical and micromechanical retention between different constituents. There are different surface treatments that have been advocated such as surface roughening by airborne particle abrasion ^(5, 6), chemical treatments to optimize the chemical bond between the cement and the post, such as silane coating, ^(7, 8) and surface roughening in addition to chemical treatment ^(9, 10).

Fewer researches have been published regarding the effect of different surface treatments on the retention and leakage of the newer prefabricated fiber reinforced composite posts cemented to the root canal with resin-based cement. Therefore, it was found valuable to investigate the effect of different surface treatments on retention and microleakage of fiber reinforced posts.

The longevity of endodontically treated teeth has been greatly enhanced by continuing developments made in endodontic therapy and restorative procedures. After endodontic therapy a tooth must be restored to both functional and esthetic demands. Endodontically treated teeth with loss of coronal tooth structure either due to caries or during preparation of access cavity generally require a radicular post as a means to support the final restoration (11)

Fiber reinforced composite posts

Adhesively luted fiber-reinforced composite (FRC) posts were introduced in 90's ⁽¹²⁾ and have been increasingly used for the restoration of endodontically treated teeth in recent years. They are considered viable alternatives to metal posts when strength, stiffness and resistance to corrosion are required in the restoration of root filled teeth ⁽¹³⁾.

The major advantage of fiber posts is their similar modulus of elasticity to that of dentin, producing a stress field similar to that of natural teeth, whereas metal posts exhibit high stress concentrations at the post dentin interface ^(14, 15). The properties of (FRC) posts depend on type, direction of fibers and nature of the matrix. Addition of fibers to a polymer matrix can improve significantly its physical and mechanical properties ⁽¹⁶⁾.

Several studies evaluated the retentive strength of FRC posts^(17,18), others investigated the flexural properties of FRC post ^(19, 20). Some workers suggest that a more rigid system is advantageous as a smaller diameter of post may be used, therefore allowing a greater conservation of tooth tissue during preparation ⁽²¹⁾, and another study stated that fracture strength of FRC post is equivalent to conventional direct metallic post ⁽²²⁾.

Fiber reinforced composite surface treatments

Surface treatments of fiber posts are considered to be a common method of improving the general adhesion properties of a material, facilitating chemical and micromechanical retention between different constituents (23).

Several studies used silane as a chemical surface treatment in an attempt to improve bonding of fiber post and revealed controversial results. Some studies ^(6, 24) reported an increasing effect of silanization compared to untreated controls, whereas other studies ^(25, 7) did not detect any difference between silanated and untreated control posts.

Etching is intended to create a roughening of the surface that allows for micromechanical interlocking with resinous restoration. This methodology has been recently proposed for etching glass fiber posts ⁽²⁶⁾. Phosphoric acid, hydrogen peroxide, and hydrofluoric acid are common materials used for conditioning fiber post surface. The acid effect was time-dependent and influenced by the post composition (type of matrix and/or fibers) ⁽²⁷⁾

Sandblasting is routinely applied to provide surface roughening making materials more bondable. Airborne-particle abrasion produces a roughened surface as a result of the high-speed impact of abrasive particles, enabling better interaction with the resin cement, but the roughened surface may produce surface damage which, in turn, reduces the strength of the post.

Sahafi et al. ⁽⁹⁾ (2003) determined the effect of surface treatments on bond strength of two resin cements to titanium alloy, glass fiber, and zirconia posts to dentin. The posts then received one of three surface