

Application of Nanoparticles for Purification of Polluted Water

Thesis submitted by

Hanan Basheer Abousittash (M.Sc. in Microbiology, 2008)

Submitted to Partial Fulfillment of the Requirements For The Degree of Doctor of Philosophy in Science (Microbiology)

Supervised by

Dr. Zeinab Mohamed Hassan Kheiralla

Professor of Microbiology, Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

Dr. Mohamed Ahmed Hassan Betiha

Assistant professor of Nanomaterials Science, Production Department, Egyptian Petroleum Research Institute (EPRI).

Dr. Abeer Ahmed Rushdy Mohamed

Professor of Microbiology, Botany
Department, Faculty of Women for Arts,
Science and Education,
Ain Shams University.

Dr. Sanaa Sobhy Zaki Gebrael

Lecturer of Microbiology, Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

Botany Department
Faculty of Women for Arts, Science
and Education, Ain Shams
University
2018

This thesis has not been previously submitted for any degree at this or any other university

Hanan Basheer Abousittash

Supervisors

1-Dr. Zeinab Mohamed Hassan Kheiralla

Professor of Microbiology, Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

2- Dr. Abeer Ahmed Rushdy Mohamed

Professor of Microbiology, Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

3- Dr. Mohamed Ahmed Hassan Betiha

Associate Professor of Nanomaterials Science, Production Department, Egyptian Petroleum Research Institute (EPRI).

4- Dr. Sanaa Sobhy Zaki Gebrael

Lecturer of Microbiology, Botany Department, Faculty of Woman for Arts, Science and Education, Ain Shams University.

Ph.D. Thesis

Name: Hanan Basheer Abousittash

Title: Application of Nanoparticles for Purification of Polluted Water

Scientific Degree: Ph.D. of Science (Microbiology)

Department: Botany Department

Faculty: Faculty of Women for Arts, Science and Education

University: Ain Shams University

Approval Sheet

Application of Nanoparticles for Purification of Polluted Water

Approved by	Signature
1- Prof. Dr. Zeinab M. H. Kheiralla	
2- Prof. Dr. Abeer Ahmed Rushdy	
3- Dr. Mohamed Ahmed Hassan Betiha	
4- Dr. Sanaa Sobhy Zaki Gebrael	•

الله الحراث الله

﴿ وَيُطَافُ عَلَيْهِم بِآنِيَةٍ مِّن فِضَّةٍ وَأَكْوَابٍ كَانَتْ قَوَارِيرَا (15) قَوَارِيرًا (15) قَوَارِيرًا مِن فِضَّةٍ قَدَّرُوهَا تَقْدِيرًا (16) ﴾

الحظنيم

الآية (15 16) سورة الإنسان

Acknowledgment

I am deeply thankful to **God** by the grace of whom for the progress in this work and support to complete this thesis.

I would like to express my deepest gratitude to **Dr. Zeinab**Mohamed Hassan Kheiralla, the professor of Microbiology
(Faculty of Women for Arts, Science, and Education, Ain Shams University) for suggesting the topic of this thesis, sound supervision, kindly help, guidance, high energetic support, and encouragement for performing this thesis.

I would also like to express a great thanks and gratitude to **Dr. Abeer Ahmed Rushdy,** the Professor of Microbiology, and Head of Botany Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, for sound supervision, kindly help, and guidance.

I would also like to express a great thanks and gratitude to **Dr. Mohamed Ahmed Hassan Betiha**, Assistant Professor of Nanomaterials-Science, Production Division, Egyptian Petroleum Research Institute (EPRI), for his helpful in overcoming all problems in preparation, characterization, explanation and sound discussion of the prepared nanomaterials.

I also would like to express thanks and appreciation to **Dr. Sanaa Sobhy Z. Gebrael,** Lecture of Microbiology (Faculty of Women for Arts, Science, and Education, Ain Shams University) for sound supervision, kindly help, and guidance.

I am especially grateful to **Dr. Mohamed Fathy Menoufy,** Professor of petroleum refining, Refining Division, Egyptian Petroleum Research Institute (EPRI), for his correct all direction all the work and editing the final printed thesis.

My special thanks also are extended to the staff members of Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

DEDICATION Dedicated to my beloved parents, my husband and my daughters I find no enough words to express my love and modesty to them

Contents

Contents

Title	Page
Abstract	I
Introduction	XV
The aim of the study	XVIII
REVIEW OF LITERATURE	1
I-Water pollution	2
1- Sources of water pollution	4
2- Types of water pollutants	4
a- Organic pollutants	5
b- Inorganic pollutants	5
Heavy metals (Chromium, Copper, Mercury, Lead, and Cobalt)	5
c - Biological pollutants	10
3- Purification of water	12
II- Nanomaterials	15
1- Types of nanomaterials	15
1.1- Silver nanoparticles.	15
1.2- Mesoporous silica nanoparticles	17
2- Mechanisms of antimicrobial action of silver nanoparticles	19

3- Synthesis of mesoporous silica silver nanoparticles	20
4- Techniques used for the characterization of nanoparticles	23
III - Application of nanoparticles.	24
1- Application of silver nanoparticles in water purification	24
2- Biofilm formation prevention	28
MATERIALS AND METHODS:	33
I-Materials	33
1- Chemicals used for synthesizing of silver nanoparticles /mesoporous silica	33
2-Heavy metals	33
3-Microbial strains	33
4-Media used	34
5- Chemicals used for protein electrophoresis	40
6-Reagents, buffers, and solutions	41 44
1- Preparation of mesoporous silica/silver nanoparticles	44
1.1- Preparation of mesoporous silicate KIT-6	44
1.2- Preparation of NH ₂ -KIT-6	45
1.3- Determination of amino groups in KIT-6	45
1.4- Immobilization of silver nanoparticles in NH ₂ -KIT-6 (Ag/NH ₂ -KIT-6)	46
1.5- Immobilization of silver nanoparticles in NH ₂ - KIT-6 (Ag/NH ₂ -KIT-6 (1.1&2.4%))	47

2-Characterization of the obtained compounds	48
2.1- UV-VIS spectrophotometric analysis	48
2.2- Fourier transform-infrared (FTIR) spectra Analysis	49
2.3- X-ray diffraction analysis (XRD)	49
2.4- High-resolution transmission electron microscope (HRTEM)	50
2.5- N2 adsorption isotherms	50
2.6- X-ray photoelectron spectroscopy (XPS)	51
2.7- Inductive Coupled Plasma (ICP)	51
3-Microbiological studies	52
3.1- Inoculum preparation	52
3.2- Antibacterial susceptibility test	52
3.3- Assessment of the antibacterial activity of mesoporous silica silver nanoparticles	54
a- Well, diffusion test	54
b- Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)	54
3.4- Evaluation of environmental effect on antibacterial activity of mesoporous silica silver nanoparticles	56
3.4.1- Effect of different temperatures and different time intervals.	56
3.4.2- Effect of different pH values and different time intervals.	56
3.5- Evaluation of the antibacterial activity of mesoporous Ag/NH ₂ -KIT-6 (7.1%) against a mixed culture of bacteria.	57
3.6- Action of mesoporous Ag/NH ₂ -KIT-6 (7.1%) on the ultrastructure of bacterial cells	60
3.7- Protein electrophoresis	60

a-	Preparation and solubilization of the total proteins	61
b-	Preparation of the separating gel	61
c-	Stacking gel	61
d-	Application of the samples	62
e-	Running condition	62
f-	Gel staining	62
g-	Gel distaining	63
	ications of mesoporous silica silver	63
4.1- A	dsorption of Cr (VI) and Cu (II) from synthetic water by esoporous Ag/NH2-KIT-6 (x)	63
a-]	Kinetic of Cr (VI) and Cu (II) adsorption	64
b-]	Kinetic isotherm	65
-	oplication of mesoporous silica silver nanoparticles in fferent natural water samples	66
a- \	Water sampling	66
	Effect of Ag/NH2-KIT-6 (7.1%) on metals load of collected natural water samples	67
]	Assessment of antibacterial activity of mesoporous Ag/NH2-KIT-6 (7.1%) against Total Coliform and Fecal Coliform in the collected natural water samples	67
	ne effect of mesoporous Ag/NH2-KIT-6 (7.1%) on adherence and biofilm formation	69
Statistic	cal analysis	70
RESUL	TS AND DISCUSSION	71
CONC	LUSION	174
RECO	MMENDATIONS	177

SUMMARY	178
REFERENCES	184

List of Tables

Title Pa	ge
Table (1):	53
Interpretation of the <i>in vitro</i> antibacterial susceptibility test.	
Table (2):	87
The physicochemical characterization and textural of KIT-6, NH ₂ -KIT-6 and NH ₂ -KIT-6 (3.2 and 7.1%).	
Table (3):	100
The physicochemical characterization and textural of KIT-6, NH ₂ -KIT-6, NH ₂ -KIT-6 (1.1 and 2.4%).	
Table (4):	104
Antibacterial activity of Ag/NH ₂ -KIT-6 (x) versus antibacterial activity of standard antibiotics against <i>E. coli</i> , <i>P. aeruginosa</i> , <i>S. typhi</i> and <i>S. aureus</i> .	
Table (5): The MIC and MBC of mesoporous Ag/NH2-KIT-6(x) against the tested bacteria.	107
Table (6):	110
Antibacterial activity of mesoporous Ag/NH ₂ -KIT-6 (7.1%) against <i>E.coli</i> cells at different temperatures and different time intervals.	
Table (7):	112
Antibacterial activity of mesoporous Ag/NH_2 -KIT-6 (7.1%) against P . $aeruginosa$ cells at different temperatures and different time intervals.	
Table (8):	114
Antibacterial activity of mesoporous Ag/NH2-KIT-6 (7.1%) against <i>S. typhi</i> cells at different temperatures and different time intervals.	••
Table (9):	116
Antibacterial activity of mesoporous Ag/NH ₂ -KIT-6 (7.1%) against <i>S.aureus</i> cells at different temperatures and different time intervals.	
Table (10):	117
Antibacterial activity of mesoporous Ag/NH ₂ -KIT-6 (7.1%) against <i>E. coli</i> cells at 37°C and different pH values and different time intervals.	