

# بسم الله الرحمن الرحيم



-C-02-50-2-





شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم





## جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

## قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار







بالرسالة صفحات لم ترد بالأصل









## Effect of Argon laser Activation on **Some Properties of Different Composite Resins**

#### **Thesis**

Submitted to The Faculty of Dentistry in Partial Fulfillment of The Requirements for The Degree of Doctor of Philosophy in Basic Dental Science

(Dental Materials)

By

Gihan Ali Abd El-Rahman

B.D.S, Msc. (Cairo)

Assistant lecturer, Department of Bio-Materials,

Faculty of Oral and Dental Medicine,

Cairo University

Cairo University

## **Supervisors**

#### Dr. Abd El Hadi Mohamed Amin

Professor of Dental Materials
Department of Biomaterials
Cairo University

And

Dean of the High Institute of Dental Technicians Cairo University

Dr. Nahed Galal Bakir

Professor of Dental Materials Department of Biomaterials Cairo University

#### Dr. Mohamed Abd El-Harith Mohamed

Professor of Laser Physics
National Institute of Laser Enhanced Science (NILES)

#### **ACKNOWLEDGEMENT**

I am greatly indebted to Dr. Abd El Hadi Amin, Professor of Dental Materials, Cairo University. He both assisted and encouraged me throughout this research.

To Dr. Nahed Bakir, Professor of Dental Materials, Cairo University. Thanks and appreciation are due to her for all what she has sincerely done for me.

To Dr. Mohamed Abd El Harith, Professor of Laser Physics, National Institute of Laser Enhanced Science (NILES). Thanks are fully due for his knowledge, valuable advice and help.

To Dr. Inas El Attar, thanks are expressed for her advice in the statistical analysis of data.

To the staff of the Bio-materials Dept., thanks for their encouragement, help and advice.

I would also like to thank my mother for her love and support all the time.

Last but not least is my special gratitude and appreciation to my husband Alaa for his love, encouragement and support allthrough.

## **CONTENTS**

| Introduction                                            | 1  |
|---------------------------------------------------------|----|
| Review of the Literature                                | 2  |
| History and development of the laser                    |    |
| The laser engine: How lasers work                       |    |
| Characteristics of the laser                            |    |
| Laser types                                             | 4  |
| Soft lasers                                             | 5  |
| Hard lasers                                             | 5  |
| Composite resin restorative materials                   | 7  |
| Chemistry and composition                               |    |
| Matrix phase                                            |    |
| Reinforcing phase                                       |    |
| The coupling agent                                      | 14 |
| Composite selection                                     | 14 |
| Development of polymerization systems                   |    |
| Autopolymerization system                               | 15 |
| Photopolymerization system                              | 15 |
| Ultra violet polymerization system                      | 15 |
| Visible light polymerization system                     | 16 |
| Photo- polymerizing sources                             | 17 |
| Quartz - Tungsten sources                               | 17 |
| Plasma – Arc curing light sources                       | 18 |
| Argon - ion lasers                                      | 18 |
| Photo- polymerization mechanisms                        | 19 |
| Photoabsorbing materials                                | 19 |
| Creation of a free radical and polymerization           | 20 |
| Factors affecting efficiency of polymerization          | 22 |
| Light source                                            | 22 |
| Duration of exposure                                    | 23 |
| Restorative materials                                   | 23 |
| Relationship between light intensity and cure potential | 25 |
| Degree of conversion                                    | 26 |
| Depth of cure                                           | 29 |
| Tensile strengths                                       | 33 |
| Dimensional stability                                   | 34 |
| Aim of the Study                                        | 42 |

| Materials and Methods                             | 43  |
|---------------------------------------------------|-----|
| Materials                                         | 44  |
| Methods                                           | 43  |
| Laser setup                                       | 43  |
| Specimen preparation                              |     |
| Storage                                           | 53  |
| Determination of the degree of conversion by FTIR | 53  |
| Methacrylate groups in the different shades       |     |
| of prepolymerized monomer pastes                  | 53  |
| Residual methacrylate groups in the different     |     |
| shades of polymerized composite-KBr technique     | 55  |
| Hardness testing                                  | 57  |
| Diametral tensile strength testing                | 59  |
| Measurements of dimensional change                | 59  |
| Results                                           | 62  |
| Discussion                                        | 135 |
| Summary and Conclusions                           | 146 |
| References                                        | 148 |
| Arabic Summary                                    |     |

## **List of Tables**

| Table |                                                                                                                                                       | Page |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1     | Most common hard lasers                                                                                                                               | 5    |
| 2     | Classification of dental composites according to filler particle size                                                                                 | 14   |
| 3     | Composite resins used in the study                                                                                                                    | 44   |
| 4 a   | Factorial design of microfilled composite activated by argon laser                                                                                    | 48   |
| 4 b   | Factorial design of microfilled composite activated by visible light                                                                                  | 49   |
| 4 c   | Factorial design of hybrid composite activated by argon laser                                                                                         | 50   |
| 4 d   | Factorial design of hybrid composite activated by visible light                                                                                       | 51   |
| 5     | Visible light and argon laser exposure times of the different shades of microfilled composite (Silux-plus)                                            | 53   |
| 6     | Visible light and argon laser exposure times of the different shades of hybrid composite (Z-100)                                                      | 53   |
| 7     | Degree of conversion of microfilled composite (%).                                                                                                    | 82   |
| 8     | Analysis of variance results of the effect of light source, shade, storage and time on degree of conversion of microfilled composite.                 | 83   |
| 9     | Degree of conversion of hybrid composite (%).                                                                                                         | 84   |
| 10    | Analysis of variance results of the effect of light source, shade, storage and time on degree of conversion of hybrid composite.                      | 85   |
| 11    | Hardness of microfilled composite following dry storage (VHN).                                                                                        | 95   |
| 12    | Analysis of variance results of the effect of light source, shade and time on top surface hardness of microfilled composite following dry storage.    | 96   |
| 13    | Analysis of variance results of the effect of light source, shade and time on bottom surface hardness of microfilled composite following dry storage. | 96   |
| 14    | Hardness of microfilled composite following wet storage (VHN).                                                                                        | 97   |

| Table |                                                                                                                                                       | Page |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 15    | Analysis of variance results of the effect of light source, shade and time on top surface hardness of microfilled composite following wet storage.    | 98   |
| 16    | Analysis of variance results of the effect of light source, shade and time on bottom surface hardness of microfilled composite following wet storage. | 98   |
| 17    | Bottom to top surface hardness ratio of microfilled composite following dry and wet storage.                                                          | 99   |
| 18    | Hardness of hybrid composite following dry storage (VHN).                                                                                             | 100  |
| 19    | Analysis of variance results of the effect of light source, shade and time on top surface hardness of hybrid composite following dry storage.         | 101  |
| 20    | Analysis of variance results of the effect of light source, shade and time on bottom surface hardness of hybrid composite following dry storage.      | 101  |
| 21    | Hardness of hybrid composite following wet storage (VHN).                                                                                             | 102  |
| 22    | Analysis of variance of the effect of light source, shade and time on top surface hardness of hybrid composite following wet storage.                 | 103  |
| 23    | Analysis of variance results of the effect of light source, shade and time on bottom surface hardness of hybrid composite following wet storage.      | 103  |
| 24    | Bottom to top surface hardness ratio of hybrid composite following dry and wet storage.                                                               | 104  |
| 25    | Diametral tensile strength of microfilled composite (MPa)                                                                                             | 113  |
| 26    | Analysis of variance results of the effect of light source, shade, storage and time on diametral tensile strength of microfilled composite.           | 114  |
| 27    | Diametral tensile strength of hybrid composite(Mpa).                                                                                                  | 115  |
| 28    | Analysis of variance results of the effect of light source, shade, storage and time on diametral tensile                                              |      |
|       | strength of hybrid composite.                                                                                                                         | 116  |
| 29    | Dimensional changes of microfilled composite (%).                                                                                                     | 125  |

| Table |                                                                                                                                 | Page | : |
|-------|---------------------------------------------------------------------------------------------------------------------------------|------|---|
| 30    | Analysis of variance results of the effect of light source, shade, storage and time on dimensional                              |      |   |
|       | changes of microfilled composite.                                                                                               | 126  |   |
| 31    | Dimensional changes of hybrid composite (%).                                                                                    | 127  |   |
| 32    | Analysis of variance results of the effect of light source, shade, storage and time on dimensional changes of hybrid composite. | 128  |   |

## **List of Figures**

| Figure |                                                                                                                   | Page |
|--------|-------------------------------------------------------------------------------------------------------------------|------|
| 1      | Structure of Bis-GMA composite monomer system and EDGMA based diluents                                            | 10   |
| 2      | Photoinitiator system of visible light activated                                                                  | 1 1  |
|        | composites                                                                                                        | 11   |
| 3      | Photofragmentation of diketone into free radicals                                                                 | 21   |
| 4      | Schematic diagram of the telescopic system                                                                        | 45   |
| 5      | The telescopic system                                                                                             | 46   |
| 6      | Stainless steel split mold                                                                                        | 52   |
| 7      | The FTIR spectrophotometer                                                                                        | 54   |
| 8      | The mini cell                                                                                                     | 54   |
| 9      | KBr pellet maker kit                                                                                              | 56   |
| 10     | The Vickers micro hardness tester                                                                                 | 58   |
| 11     | The Universal testing machine                                                                                     | 60   |
| 12     | FTIR spectrum of prepolymerized light shade microfilled composite.                                                | 64   |
| 13     | The effect of argon laser activation on the FTIR spectrum of polymerized light shade microfilled composite.       | 65   |
| 14     | The effect of visible light activation on the FTIR spectrum of polymerized light shade microfilled composite.     | 66   |
| 15     | FTIR spectrum of prepolymerized universal shade microfilled composite.                                            | 67   |
| 16     | The effect of argon laser activation on the FTIR spectrum of polymerized universal shade microfilled composite.   | 68   |
| 17     | The effect of visible light activation on the FTIR spectrum of polymerized universal shade microfilled composite. | 69   |
| 18     | FTIR spectrum of prepolymerized dark shade microfilled composite.                                                 | 70   |
| 19     | The effect of argon laser activation on the FTIR spectrum of polymerized dark shade microfilled composite.        | 71   |
| 20     | The effect of visible light activation on the FTIR spectrum of polymerized dark shade microfilled composite.      | 72   |

| Figure |                                                                                                              | Page |
|--------|--------------------------------------------------------------------------------------------------------------|------|
| 21     | FTIR spectrum of prepolymerized light shade hybrid composite.                                                | 73   |
| 22     | The effect of argon laser activation on the FTIR spectrum of polymerized light shade hybrid composite.       | 74   |
| 23     | The effect of visible light activation on the FTIR spectrum of polymerized light shade hybrid composite.     | 75   |
| 24     | FTIR spectrum of prepolymerized universal shade hybrid composite.                                            | 76   |
| 25     | The effect of argon laser activation on the FTIR spectrum of polymerized universal shade hybrid composite.   | 77   |
| 26     | The effect of visible light activation on the FTIR spectrum of polymerized universal shade hybrid composite. | 78   |
| 27     | FTIR spectrum of prepolymerized dark shade hybrid composite.                                                 | 79   |
| 28     | The effect of argon laser activation on the FTIR spectrum of polymerized dark shade hybrid composite.        | 80   |
| 29     | The effect of visible light activation on the FTIR spectrum of polymerized dark shade hybrid composite.      | 81   |
| 30     | Degree of conversion of the light shade microfilled composite.                                               | 86   |
| 31     | Degree of conversion of the universal shade microfilled composite.                                           | 87   |
| 32     | Degree of conversion of the dark shade microfilled composite.                                                | 88   |
| 33     | Degree of conversion of the light shade hybrid composite.                                                    | 89   |
| 34     | Degree of conversion of the universal shade hybrid composite.                                                | 90   |
| 35     | Degree of conversion of the dark shade hybrid composite.                                                     | 91   |
| 36     | Bottom surface hardness of the light shade microfilled composite.                                            | 105  |
| 37     | Bottom surface hardness of the universal shade microfilled composite.                                        | 106  |