Role of PET/CT in diagnosis, staging and follow up of HCC

Essay

Submitted for partial fulfillment of Master Degree in Radiodiagnosis

By

Osama Mohamed Ahmed Montaser

MB, BCh

Faculty of medicine Cairo University

Supervised By

Prof Dr : Abeer Abd Elmaksood Hafez

Professor of Radiodiagnosis Faculty of Medicine Ain shams university

Dr. Yosra Abdelzaher Abdallah

Lecturer of Radiodiagnosis
Ain shams university

Radiodiagnosis Department Faculty of Medicine Ain shams University 2014

Acknowledgement

First and foremost, I submit all my gratitude to ALLAH to whom I owe every success in my life.

I would like to express my sincere appreciations and profound gratitude to Prof. **Dr.Abeer Abd Elmaksood Hafez**, Professor of Radiodiagnosis, Faculty of Medicine –Ain shams University, for her help, kind guidance, continuous support & giving me such an honor to work under her supervision.

I would like to express my respect, appreciation, and thanks for **Dr.yosra Abdelzaher**, Lecturer of Radiodiagnosis, Ainshams university, for her assistance, encouragement, invaluable guidance, constructive criticism and great help in supervising this work.

To my parents,

And my wife.

FOR
THEIR HELP,
SUPPORT,
GREAT CARE,
ENCOURAGEMENT
AND CONTINOUS PUSH

Abstract

PET/CT is superior to PET and CT alone, and/or magnetic resonance imaging (MRI), in the diagnosis and treatment of various primary or metastatic cancers.

Dual modality PET/CT scanning provides accurately fused morphologic (CT) and functional (PET) data sets. A very small tumor is well detected by PET but can be missed by CT. On the other hand, a large tumor with minimal functional deviations may be seen on a CT image, but may not be detected by PET. In both situations, PET/CT would localize the tumor accurately. Thus, PET/CT is a more accurate test than either of its individual components.

PET/CT has advantages over other imaging methods; it can differentiate benign from malignant lesions, staging and restaging tumors, detect functional changes before there is any change in clinical or radiological size of a mass, better in identifying cancer that has spread, making up treatment plan and monitoring tumor response, distinguish viable metabolically active tissue from scars, and it is indicated for restaging in patients with suspected recurrent and metastatic disease.

Key words:

PET CT - Hepatitis C Virus - Aflatoxin B.

LIST OF ABBREVIATION

LLS: Left lobe segment donation

FCAT: Federative Committee on Anatomical Terminology

RHV: Right hepatic vein

MHV: Middle hepatic vein

LHV: Left hepatic vein

IVC: Inferior vena cava

MP: Main portal vein

CM: centimeter

SMA: Superior mesenteric artery

CT:Computed tomography

HU:Housfield unit

FL: Falciform ligament

PET: Positiron emitted tomography

FDG: Fluoro Deoxy Glucose

PET CT: Position emission tomography with computed tomography

CNS: Central nervous system

CVS:Cardio vascular system

18F FDG: ¹⁸Florine labeled 2 fluro 2 deoxy glucose

GCSF: Granulocyte colony-stimulating factor

HCC:Hepato cellular carcinoma

HCV: Hepatitis C Virus

RNA: Ribonucleic acid

HBV: Hepatitis B Virus

AFB: Aflatoxin B

AFM1: Aflatoxin M1

H&E: Hematoxylin and Eosin

NAFLD: Non-alcoholic fatty liver disease

TNM: Tumor Node Metastasis

UICC: International Union against Cancer

MRI: Magnetic resonant imaging

KEV: Kilo electron volt

MEV: Milli electron volt

PDGF: Platelet Derived Growth Factor

VEGF: Vascular Endothelial Growth Factor

BFGF: Basic Fibroblast Growth Factor

GLUT: Glucose Transporters

PMTs: Photomultiplier tubes

NaI (Tl): Thallium-doped sodium iodide

BGO: Bismuth Germinate

LSO: Lutetium Oxyorthosilicate

GSO: Gadolinium Silicate

SPECT: Single Photon Emission Computed tomography

KV: Killo Volt

LOR: Line of response

18F: Fluorine 18

13N: Nitrogen 13

11C: Carbon 11

150: Oxygen 15

82Rb: Rubidium 82

β+: Positron

v: neutrino

 γ : Photon

N: neutron

P: proton

H+: Hydrogen ion

Z: Atomic number

MCi: Millicurie

IV: Intravenous

AC/AL: Attenuation correction/Alignment

SUV: Standardized uptake value

CT FOV: Computed Tomography Field of View

AFP: Alfa-fetoprotein

US:Ultrasonography

CO2: Carbon Dioxide

11C-ACT: 11 carbon acetate

BCLC: Barcelona Clinic Liver Cancer

¹⁸**FDG-6-P**: 18 F-FDG-6-phosphate

18 FDGal: 18 fluoro-2-deoxy-D-galactose

FCH: Flurocholine

11C-choline: 11 carbon choline

MDCT: Multi detector computed tomography

TACE: Transarterial chemoembolization

RFA: Radiofrequency ablation

PEI: Percutar	neous ethanol injection	L		
	vein thrombosis			
PV : Portal vie	en			

LIST OF FIGURES

Figure 1.1 The surfaces and external features of the liver
Figure 1.2 showing the Relations of the liver8
Figure 1.3 showing Segmentation of the liver – Couinaud
Figure 1.4 Drawing illustrates the segmental anatomy of the liver13
Figure 1.5 Segmental anatomy according to Couinaud
Figure 1.6 H. Bismuth's functional classification of the liver15
Figure 1.7 Dissection to show the relations of the hepatic artery, bile duct and portal vein to each other in the lesser omentum: anterior aspect
Figure 1.8: The portal vein and its tributaries (semi-diagrammatic)20
Figure 1.9 Arrangement of the hepatic venous territories20
Figure 1.10 Biliary system anatomy
Figure 1.11(a-d) CT scan through the liver with Couinaud's segments divided and numbered
Figure 1.12 Computerized tomography of the liver. The vessels can be recognized and used as landmarks to define the different segments
Figure 2.1 Hepatocellular carcinoma. A cirrhotic liver with multiple tumor nodules scattered throughout
Figure 2.2 Hepatocellular carcinoma. A cirrhotic liver with a solitary encapsulated tumor
Figure 3.1 Uptake of FDG44
Figure 3.2 Annihilation reaction
Figure 3.3 Radial blurring47
Figure 3.4 Mean positron range and annihilation angle blurring48
Figure 3.5 Coincidence imaging
Figure 3.6 A schematic illustration of a PET CT system51
Figure 3.7 PET/CT image consisting of coronal whole-body CT image53
Figure 3.8 Photograph (side view) of a hybrid PET-CT scanner shows the PET (P) and CT (C) components53

Figure 4.1 Normal distribution of FDG
Figure 4.2 Typical scout image obtained during an FDG PET/CT study77
Figure 4.3 Typical imaging protocol for combined PET/CT78
Figure 4.4 Display screen of the syngo software platform shows fused PET/CT80
Figure 4.5 High-density metallic implants generate streaking artifacts86
Figure 4.6 Attenuation correction artifacts due to oral contrast agents87
Figure 4.7 Attenuation correction artifacts due to IV contrast87
Figure 4.8 Truncation artifact
Figure 4.9 Misregistration artifacts89
Figure 5.1 Patient with left hepatic mass incidentally detected on ultrasound. PET/CT was requested for further assessment, and revealed FDG avidity of the hepatic mass
Figure 5.2 PET/CT shows a solitary focal hypermetabolic focus in the right lobe of the liver
Figure 5.3 47-year-old male patient on whom was performed a liver CT and ¹⁸ F FDG / ¹¹ C acetate PET/CT for the evaluation of suspicious recurrent Rt HCC96
Figure 5.4 Detection of HCC with ¹⁸ F-FDG PET/CT and ¹¹ C acetate PET/CT on transaxial sections of liver and chest
Figure 5.5 (A–C) Transaxial PET/CT images of 71-y-old man in whom HCC of Edmondson and Steiner's grade 1 was diagnosed
Figure 5.6 FDGal PET/CT image (a) and CECT image in arterial phase (b) of a large necrotic HCC with adjacent viable tumor tissue
Figure 5.7 FCH (a) and FDG (b) PET/CT images of patient with diffuse recurrence of HCC involving all the liver
Figure 5.8 A 45-year-old man with moderately differentiated HCC in the right posterior lobe and a hemangioma in the left lobe of the liver confirmed by the histopathological examination after surgery A , Multiphase contrast-enhanced MRI. B , Transaxial ¹⁸ F FDG PET/CT. C ,Transaxial ¹¹ C-choline PET/CT
Figure 5.9 Transaxial PET/CT images of 63-y-old man in whom HCC of Edmondson and Steiner's grade 2 was diagnosed. ¹¹ C-acetate PET maximal-intensity image (A) and integrated PET/CT images (B)
Figure 5.10 Mediastinal metastasis by ¹⁸ F-FDG and ¹¹ C-ACT PET/CT 107

Figure 5.11 Multifocal bone metastases by ¹⁸ F-FDG and ¹¹ C-ACT PET/CT 107
Figure 5.12 a Axial contrast-enhanced computed tomography (CT) image 90 days after a radiofrequency ablation (RFA) procedure in the right liver lobe b Corresponding axial positron emission tomography PET/CT image: c Corresponding axial PET image d Axial contrast enhanced CT image 230 days after the RFA procedure in the right liver lobe e Corresponding PET/CT image
Figure 5.13 A 50-year woman who had HCC resection 2 years before had an intrahepatic HCC recurrence and received combined RFA and TACE treatment. A highly metabolically active lesion was detected on the top of the lesion by PET and PET/CT fused images (white arrows, A-C and G)
Figure 5.14 Images of 53-y-old woman with viable (20% necrosis) lipiodolized HCC. Multiphasic contrast-enhanced CT images (A and B), ¹⁸ F-FDG PET/CT images (C and D)
Figure 5.15 Images of 55-y-old man with nonviable lipiodolized HCC. Multiphasic contrast-enhanced CT images (A and B), ¹⁸ F-FDG PET/CT images (C and D)
Figure 5.16 38-year man, who had TACE 1 month before. Contrast-enhanced arterial-phase axial CT image (A, B). The portal phases (C). PET and PET/CT fused images (D, E and F)
Figure 5.17 A 55-year woman suffering from HCC received TACE treatment. (A, B) PET images. (D, E, F) PET/CT fused imaging. Contrast-enhanced CT follow-up after 1 month later (G, H, I)
Figure 5.18 representative images for the three grades of lipoidol deposition in the tumor after TACE
Figure 5.19 representtive image characteristics of FDG uptake by viable HCC after TACE treatment
Figure 5.20 Two lymph node metastatic foci below the left diaphragm and the recurrent lesion in the transplanted liver graft 10 months after liver transplantation using CT, PET, and PET/CT
Figure 5.21 Metastatic tumor embolism in the inferior vena cava 24 months after liver transplantation using CT, PET, and PET/CT
Figure 5.22 An intramedullary metastatic focus in the left upper femoral segment 3 months after liver transplantation using CT, PET, and PET/CT122
Figure 5.23 Contrast CT scan showing right lobe and caudate lobe mass and portal vein thrombus in a 55-year-old man. During the arterial phase (A), during the portal phase (B), PET (C) and PET/CT fused images (D)

$ \begin{tabular}{ll} \textbf{Figure 5.24} \ MRI \ scan \ showing \ a \ left \ lobe \ mass \ and \ portal \ vein \ thrombus \ in \ an \ 80-year-old \ man \ (\ A), \ CT \ (\ C) \ , \ PET \ (\ B) \ and \ PET/CT \ fused \ images \ (D)125 \end{tabular}$
Figure 5.25 Contrast CT scan showing right lobe and caudate lobe mass and Portal
vein thrombus of the right branch in the same patient. During the arterial phase (A),
the portal phase (B), PET (C) and PET/CT fused images (D)
Figure 5.26 Contrast CT scan showing a diffuse tumor and portal vein thrombus in a 44 year-old man. During the arterial phase (A and C) and PET/CT fused images (B
and D)
Figure 5.27 Contrast CT scan demonstrating a left lobe mass and portal vein
thrombus in a 60-year-old woman. During the arterial phase (A), portal phase (B),
PET (C) and PET/CT fused images (D)126

LIST OF TABLES

Pag	e no.
Table 1.1: The summary of the classifications of the liver segmen	its16
Table 2.1: Relative incidence of primary liver cancer in men in parts of the world	
Table 2.2: TNM staging of liver tumors	39
Table 2.3 : The Barcelona Clinic Liver Cancer staging classification	n40
Table3.1: Commonly used PET scintillator detectors and properties	
Table 3.2: Radioactive isotopes used in PET	55

CONTENTS

	Page
Introduction	1
Aim of the Work	3
Chapter 1: Anatomy of the Liver	4
Chapter 2:Pathology of Hepatocellular carcinoma	27
Chapter 3: Physical Principles of PET/CT	41
Chapter 4: Technique of PET/CT examination	56
Chapter 5: Diagnostic value of PET/CT in evaluation of	
HCC	91
Summary	127
References	129
Arabic Summary	

INTRODUCTION

Cancer is a major cause of death in the developed world, and is becoming a significant issue for developing countries (*Jones et al.*, 2006).

Hepatocellular carcinoma (HCC) is the 5th most common cancer world wide & responsible for up to 1 million deaths annually, its incidence is increasing worldwide because of the dissemination of hepatitis B and C virus infections (*Huang et al.*, 2009).

Hepatocellular carcinoma (HCC) is globally the commonest liver primary, and cholangiocarcinoma the second commonest primary liver tumour. Cholangiocarcinoma accounts for 3% of all gastrointestinal cancers. Mesenchymal liver tumours are rare, but include hepatic angiosarcoma and primary hepatic lymphoma (*Vauthey and Blumgart*, 2009).

The most common malignant tumors in the liver are metastases from wide variety of neoplasms, that most frequently are carcinomas from colorectal, breast, and lung primaries. Often discovered as solitary, liver metastases can be effectively treated with surgery (*Arciero and Sigurdson*, 2008).

Surgical treatment ,including hepatic resection and liver transplantation ,are considered as the most effective treatment of HCC. Intervensional treatment have been applied to patients with inoperable HCC. Despite initial remission of HCC after surgical and interventional treatment ,recurrence is common. Since patients with recurrent HCC may be amenable to potentially curative resection, early detection of intrahepatic recurrence and /or extra hepatic metastases is extremely important and can facilitate successful retreatment at an early stage (*Sun et al.*, 2009).

Modern cross sectional structural imaging techniques like ultrasonography, computed tomography (CT) and magnetic resonance imaging(MRI)provide high resolution images that aid in accurate detection, delineation and anatomic localization of the liver malignancies. However, characterization of lesions into benign and malignant etiologies is often not possible from structural imaging techniques alone. Although functional imaging techniques like positron emission tomography (PET) with radiolabeled 18F labeled