- 2-Abstract.pdf
- 3-aknolegment.pdf
- 4-CONT.pdf
- 5-List of table.pdf
- 6-List of figures.pdf
- 7-introduction.pdf
- 8-review.pdf
- 9-M&Method.pdf
- 11-Summary.pdf
- 12-REFERENCES.pdf
- 13tables.pdf
- pdf الملخص العربي14

ABSTRACT

Rania Mohammed Abdel-Hamid. Chemical and Physical Interactions between Plant Growth Regulator and some Pesticides in Vineyards. Unpublished M.Sc. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2008.

The present study aimed to throw light on the interactions between one of the plant growth regulator and some pesticides in vineyards. The obtained results indicated that there were a physical compatibility between used agrochemicals Sumithion, Sumi-eight and the plant growth regulator GA3 at their field dilution rates in both soft and hard water. This work was carried out during both 2006 and 2007 seasons on twenty years old vigorous fruitful Thompson seedless grapevines grown in private vineyard at Kalubia governorate. Data indicated the great influence of the two tested pesticides and the plant growth regulator when used alone and in their mixtures on their degradation pattern. More degradation was recorded with the mixture of the two tested pesticides and plant growth regulator compared with each one alone in all intervals during the two seasons. The corresponding recommended pre-harvest intervals (PHI) were 7 and 5 days at the two seasons after application for diniconazole alone and its mixture with fenitrothion and GA3, respectively. The PHI,s reached 9 and 7 days for fenitrothion alone and its mixture with diniconazole and GA3, respectively. On the other hand, the PHI,s were 4 and 2 days for GA3 alone and its mixture with the two tested pesticides, respectively. The obtained data indicated the great role of exposure to different temperatures on the degradation rates of the two pesticides and the plant growth regulator. In this respect, the mixtures of the two pesticides with the plant growth regulator showed more degradation than each one alone or each one mixed with the plant growth regulator. Data also indicated the great role of UV-rays and direct sunlight on the degradation rate of the two tested pesticides and the plant growth regulator. Data clearly showed that the mixture of (diniconazole + fenitrothion + GA3) had the highest degradation rate than its content when exposed separately to UV-rays and direct sunlight. The decomposition rate with exposure to sunlight was much more than that occurred with UV-rays.

Results showed that GA3 alone or in combination with the pesticides increased T.S.S and reducing acidity for both seasons. The GA3 treatments in combination with the pesticides or alone significantly increased the total yield, cluster weight, berry weight, size, length, width, bunch compactness and rachis weight, berry shape become global at both seasons of 2006 and 2007.

Key words: Compatibility, Diniconazole, Fenitrothion, Plant growth regulator (GA3), Residues, Thermal and photodegradation, quality, Thompson seedless grapes

ACKNOWLEDGMENT

Many thanks and Praise be to great Allah most gracious who shined my way and Supported me with patience and perseverance to fulfill this humble work.

I wish to express my deep gratitude to Prof. **Dr. Zidan Hendy Abd EL-Hamid,** Prof. of Pesticides Chemistry, Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University. for his Supervision, guidance, useful criticism, valuable help and his efforts to fulfill this work. For his interest and efforts on my behalf, I am extremely grateful.

My Sincere appreciation and deep gratitude and thanks to **Dr.**Walaa Mohamed Abd El-Ghany Lecturer of Pesticides Chemistry,
Dept. of Plant Protection, Faculty of Agriculture, Ain Shams University.

for his sharing in supervision, kind unfailing help throughout this work,
advice and encouragement in carrying out this work.

No words can adequately express my deep appreciation and gratitude to **Dr. Nevien Salah El- Dein,** Senior Researcher of Pesticides, Central Agriculture Research, for her supervision constructive criticism, valuable advice and help, continuous encouragement, cooperation, and kind assistance.

I would like to express my sincere gratitude and pay my respect to **Prof**. **Dr. Assem Desouky Shaltout**, Professor of Pomology, Horticulture Dept., Faculty of Agriculture, Ain Shams University for his efforts and his huge contribution to the success of this work.

All my regards, thanks and respect to **Prof**. **Dr. Nazmy Abdel-Hamid** Professor of Pomology, Horticulture Dept., Faculty of Agriculture, Ain Shams University for his guidance, friendship and helping in writing.

My Sincere appreciation and deep gratitude and thanks to **Dr. Ahmed El-Sisi** Prof. of Pesticides, Pesticide formulations development, Central Agricultural Pesticides Laboratory. Central Agriculture Research, for his kind assistance through out this work. I am also indebted to **Dr. El-Sayed Mohy El-Dein**, researcher in pesticide formulations department, for helping me throughout this work

Special thanks for all staff members of Pesticide Residues and Environmental Pollution Department, Central Agric. Pesticides Lab., Agric. Research center, Ministry of Agric.

Finally my Sincere thanks that I feel Indebted to My mother, father, brother, sister, friends and all colleagues that contributed and supported me in any way to fulfill this work.

CONTENTS

	LIST OF TABLE	V
	LIST OF FIGURES	Vii
I.	INTRODUCTION	1
II.	REVIEW OF LITRERATUERS	4
1	Compatibility and performances of pesticides and plant	
1.	growth regulator	4
2.	Persistence of tested pesticides, plant growth regulator	
	and their binary mixtures on grapes	7
2.1.	Diniconazole (Sumi-eight)	7
2.2.	Fenitrothion (Sumithion)	11
2.3.	Gibberellic acid (Berlex)	17
3.	Effect of photodecomposition on the degradation of the	
	tested pesticides, plant growth regulator and their	
	mixtures in laboratory	22
3.1.	Effect of photodecomposition on diniconazole	
	degradation	22
3. 2.	Effect of photodecomposition on fenitrothion	
	degradation	23
4.	Effect of gibberellic acid (GA3) on fruit ripening, yield	
	and quality of Thompson Seedless grape	24
Ш.	MATERIAL AND METHODS	33
1.	Pesticides used	33
1.1.	Diniconazole (Sumi-eight 5% E.C.)	33
1.2.	Fenitrothion (Sumithion 50% E.C.)	33
1.3.	Gibberellic acid (Berlex 10% tablet)	34
2.	Design of experiment	34

3.	Physical compatibility	35
3.1.	Blending technique	36
3.2.	Emulsion stability test	36
3.3.	Spontaneities	37
3.4.	Foam volume	37
3.5.	Physico-chemical properties of spray solutions of the	
	studied agrochemicals	37
3.5.1.	pH values	37
3.5.2.	Viscosity	37
3.5.3.	Surface tension.	37
4.	Pesticide residues on grapevines	38
4.1.	Sampling	38
4.2.	Residue analysis	38
4.2.1.	Extraction	38
4.2.1.1.	Diniconazole	38
4.2.1.2.	Fenitrothion	39
4.2.1.3.	Gibberellic acid.	39
4.2.2.	Clean-up process for diniconazole and fenitrothion	40
5.	Determination of active ingredient	41
5.1.	Diniconazole	41
5.2.	Fenitrothion	41
5.3.	Gibberellic acid	42
6.	Recovery studies	43
7.	Effect of certain environmental conditions on the fate of	
	diniconazole, fenitrothion, gibberellic acid and their	
	mixtures	43
	Exposure technique	43
8.	Statistical analysis	44

0	Effect of gibberellic acid and its mixtures with tested	
9.	pesticides on quality of Thompson seedless grapes	
IV.	RESULTS AND DISSCOSION	
1.	Physico-chemical properties of the pesticides .and their	
	mixtures with the plant growth regulator	
1.1.	Physical properties of fenitrothion spray solution	
1.2.	The physical properties of diniconazole spray solution	
1.3.	Physical properties of gibberellic acid spray solution	
1.4.	Physical properties of fenitrothion-gibberellic acid	
	mixture	
1.5.	Physical properties of diniconazole-Gibberellic acid	
	mixture	
1.6.	Physical properties of fenitrothion, diniconazole and	
	gibberellic acid mixture	
2.	Persistence of the tested agrochemicals on/in grape	
	fruits	
2.1.	Persistence of diniconazole and its mixtures on/in grape	
	fruits	
2.2.	Persistence of fenitrothion and its mixtures on/in grape	
	fruits	
2.3.	Persistence of gibberellic acid (GA3) and its mixtures	
	on/in grape fruits	
3.	Effect of some environmental factors on the degradation	
	of the tested pesticides, plant growth regulator and their	
	mixtures	
3.1.	Effect of different temperature on the degradation of the	
	tested agrochemicals	
3.1.1.	Effect of different temperatures on the degradation of	

	diniconazole and its mixtures	
3.1.2.	Effect of different temperatures on the degradation of	
	fenitrothion and its mixtures	78
3.1.3.	Effect of different temperatures on the degradation of	
	gibberellic acid (GA3) and its mixtures	86
3.2.	Effect of UV-Rays on the degradation of the tested	
	pesticides, plant growth regulator and their	
	mixtures	94
3.2.1.	Effect of UV-Rays on diniconazole and its mixtures	
3.2.1.	degradation	94
3.2.2.	Effect of UV-Rays on fenitrothion and its mixtures	
	degradation	95
3.2.3.	Effect of UV-Rays on the degradation of gibberellic acid	
	(GA3) and its mixtures	96
3.3.	Effect of direct sunlight exposure on the degradation of	
	tested pesticides, plant growth regulator and their	
	mixtures	103
3.3.1.	Effect of direct sunlight on the degradation of	
	diniconazole and its mixtures	103
3.3.2.	Effect of direct sunlight on the degradation of	
	fenitrothion and its mixtures	104
3.3.3.	Effect of direct sunlight on the degradation of gibberellic	
	acid (GA3) and its mixtures	105
4.	Effect of GA3 treatments on yield and quality of	
	Thompson seedless grapes	113
4.1.	Yield characteristics	113
4.1.1.	Total yield	113
4.1.2.	Cluster weight	113

VII.	ARABIC SUMMARY	
VI.	REFERENCES	133
V.	SUMMARY	129
4.3.	Chemical properties	124
4.2.3.	Berry Juice%	120
4.2.2.	Berry firmness	119
4.2.1.	Berry length and width	119
4.2.	Physical properties	119
4.1.4.	Weight of 100 berries	114
4.1.3.	Cluster length and width	114

LIST OF TABLE

Table(1):	Treatments, purposes and time of application in relation to	
	plant stages	35
Table(2):	Recovery percent of tested agrochemicals from spiked plant	
	samples	43
Table(3):	Physico-chemical properties of the tested pesticides and the	51
	plant growth regulator under spray motor dilution rate	31
Table(4):	Physico-chemical properties of the mixtures of pesticides	
	with the plant growth regulator under spray motor dilution	
	rate	52
Table(5):	Residues of diniconazole after application on/in grape fruits	
	during the seasons 2006 and 2007	57
Table(6):	Residues of fenitrothion after application on/in grape fruits	
	during the seasons 2006 and 2007	62
Table (7):	Residues of gibberellic acid after application on/in grape	
	fruits during the seasons 2006 and 2007	67
Table(8):	Effect of temperature exposure on diniconazole and its mixtu	
	at 30°C	72
Table(9):	Effect of temperature exposure on diniconazole and its mixtu	
	at 40°C	77
Table(10):	Effect of temperature exposure on diniconazole and its mixtu	
	at 50°C	76
Table (11):	Effect of temperature exposure on fenitrothion and its	
	mixture at 30°C	80
Table(12):	Effect of temperature exposure on fenitrothion and its	
	mixture at 40°C	82

Table (13):	Effect of temperature exposure on fenitrothion and its	
	mixture at 50 C	84
Table(14):	Effect of temperature exposure on gibberellic acid and its mix	
	at 30°C	88
Table(15):	Effect of temperature exposure on gibberellic acid and its mixt	
	at 40°C	90
Table(16):	Effect of temperature exposure on gibberellic acid and	
	mixture at 50°	92
Table(17):	Effect of UV-Rays exposure on diniconazole and its mixtures	97
Table(18):	Effect of UV-Rays exposure on fenitrothion and its	
	mixtures	99
Table(19):	Effect of UV-Rays exposure on gibberellic acid and its	
	mixtures	101
Table(20):	Effect of direct sunlight exposure on diniconazole and its	
	mixtures	107
Table(21):	Effect of direct sunlight exposure on fenitrothion and its	
	mixtures	109
Table(22):	Effect of direct sunlight exposure on gibberellic acid and its	
	mixtures	111
Table(23):	Effect of GA3 either alone or mixture with tested pesticides	
	on yield attributes	116
Table(24):	Effect of GA3 either alone or in mixture with pesticides on	
	physical properties	121
Table(25):	Effect of GA3 either alone or in mixture with pesticides on	
	chemical properties	126

LIST OF FIGURES

Fig. (1):	Degradation lines of diniconazole after application on/in	
	grape fruits during season 2006	58
Fig.(2):	Degradation lines of diniconazole after application on/in	
	grape fruits during season 2007	58
Fig. (3):	Degradation lines of fenitrothion after application on/in	
	grape fruits during season 2006	63
Fig. (4):	Degradation lines of fenitrothion after application on/in	
	grape fruits during season 2007	63
Fig. (5):	Degradation lines of gibberellic acid after application	
	on/in grape fruits during season 2006	68
Fig. (6):	Degradation lines of gibberellic acid after application	
	on/in grape fruits during season 2007	68
Fig. (7):	Degradation lines of diniconazole and its mixture at 30°C.	73
Fig. (8):	Degradation lines of diniconazole and its mixture at 40°C.	75
Fig. (9):	Degradation lines of diniconazole and its mixture at 50°C.	77
Fig.(10):	Degradation lines of fenitrothion and its mixture at 30°C	81
Fig.(11):	Degradation lines of fenitrothion and its mixture at 40°C	83
Fig.(12):	Degradation lines of fenitrothion and its mixture at 50°C	85
Fig.(13):	Degradation lines of gibberellic acid and its mixture at 30°C	89
Fig.(14):	Degradation lines of gibberellic acid and its mixture at 40°C	91
Fig.(15):	Degradation lines of gibberellic acid and its mixture at 50°C	93
Fig.(16):	Degradation lines of diniconazole and its mixtures after	
	exposure to UV-rays	98
Fig.(17):	Degradation lines of fenitrothion and its mixtures after	
	exposure to UV-rays	100
Fig.(18):	Degradation lines of gibberellic acid and its mixtures	
	after exposure to UV-rays	102

Fig.(19):	Degradation lines of diniconazole and its mixtures after	
	exposure to direct sunlight	108
Fig.(20):	Degradation lines of fenitrothion and its mixtures after	
	exposure to direct sunlight	110
Fig.(21):	Degradation lines of gibberellic acid and its mixtures	
	after exposure to direct sunlight	112
Fig.(22):	Effect of GA3 either alone or in mixture with pesticides	
	on yield attributes of Thompson seedless grapes during	
	2006 Season	11′
Fig.(23):	Effect of GA3 either alone or in mixture with pesticides	
	on yield attributes of Thompson seedless grapes during	
	2007 Season	118
Fig.(24):	Effect of GA3 either alone or in mixture with pesticides	
	on physical properties of Thompson seedless grapes	
	during 2006 Season	122
Fig.(25):	Effect of GA3 either alone or in mixture with pesticides	
	on physical properties of Thompson seedless grapes	
	during 2007 Season	123
Fig.(26):	Effect of GA3 either alone or in mixture with pesticides	
	on chemical properties of Thompson seedless grapes	
	during 2006 Season	12
Fig.(27):	Effect of GA3 either alone or in mixture with pesticides	
	on chemical properties of Thompson seedless grapes	
	during 2007 Season	128

I. INTRODUCTION

Grape (*Vitis vinifera*) is one of the most widely-grown fruit crop in the world. Thompson Seedless grape cultivar ranking as the most important table grape variety grown in Egypt. Worldwide, the planted areas of grapes are estimated by 24 million feddan and the total yield exceeds than 60 million ton. In Egypt, the grape is planted in different type of soils and represents the second position between fruit crops after citrus.

In this respect, the protection of grape crop from the attacking of pests is considered as a key factor for the mass production of fruits. However there are a wide range of pests including insects, nematodes, fungi, bacteria, virus and weeds (Abdel-Attey, 1994). Such pests are affecting significantly the quality and quantity of grape production. To protect grape crops from the target pests it was followed different techniques of pest control, i.e. agricultural, legal, mechanical and chemical among others. As chemical control techniques, pesticides have been used in a wide variation of agricultural application in grape crops to control insects, pathogens and combat weeds.

Grape crop is mainly subjecting to infestation with mealy bugs, powdery mildew and berry rot. The insecticide fenitrothion (Sumithion) is recommended for controlling mealy bugs and thrips, while the triazole fungicide diniconazole (Sumi-eight) is recommended for controlling powdery mildew and berry rot according to pest control program, (Ministry of Agriculture and Land Reclamation, Egypt ,2001).