

Role of Diagnostic Ultrasonography in Rehabilitation of Ankle Sprain in Athletes

Thesis

Submitted for partial fulfillment of M.D. degree in Physical Medicine, Rheumatology and Rehabilitation

Presented by

Mona Mohamed Saad El-Bably

M.B., B. Ch., M.Sc. Faculty of Medicine - Ain Shams University

Supervised by

Prof. Dr. Mohamed Ragaai El-Helow

Professor of Physical Medicine Rheumatology and Rehabilitation Department Faculty of Medicine Ain Shams University

Prof. Dr. Ola Abdel-Naser Abdel-Aziz

Professor of Physical Medicine Rheumatology and Rehabilitation Department Faculty of Medicine Ain Shams University

Prof. Dr. Dina Shawky Al-Zifzaf

Professor of Physical Medicine, Rheumatology and Rehabilitation Department Faculty of Medicine Ain Shams University

Ass. Prof. Dr. Hossam Moussa Sakr

Assistant Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2018

دور اشعة الموجات الفوق صوتيه التشخيصية في تا'هيل اصابة التواء □ الكلحل للرياضيين

رسالة

توطئة للحصول على درجة *الدكتوراه فى الطب الطبيعي* والروماتيزم والتأهيل

مقدمة من

منى محمد سعد البابلي/الطبيبة

بكالوريوس الطب و الجراحة

تحت إشراف

□ الائستاذ الدكتور/ محمسد رجائي الحلو

أستاذ الطب الطبيعي والروماتيزم والتأهيل

كلية الطب – جامعة عين شمس

□الائستاذ الدكتور/ علا عبد الناصر عبد العزيز

أستاذ الطب الطبيعي والروماتيزم والتأهيل

كلية الطب- جامعة عين شمس

□الائستاذ الدكتور/ دينا شوقى الزفزاف

أستاذ الطب الطبيعي والروماتيزم والتأهيل

كلية الطب- جامعة عين شمس

□الائىيتاذ المساعد الدكتور/ حسام موسى صقر

أستاذ مساعد الاشعه التشخيصيه كلية الطب جامعة عين شمس

كلية الطب

جامعة عين شمس

سورة البقرة الآية: ٣٢

First of all, many thanks will never be enough to express my endless gratitude to Allah for giving me the strength and support to carry out this work.

I would like to express my deep appreciation wrapped with great respect to **Prof. Dr. Mohamed Ragaai El-Helow**, Professor of Physical Medicine Rheumatology and Rehabilitation Department, Faculty of Medicine, Ain Shams University, who not only encouraged me but also provided tireless help and continuous guidance throughout this work.

I am greatly honored to express my deepest gratitude to **Prof. Dr. Ola Abdel-Naser Abdel-Aziz,** Professor of Physical Medicine
Rheumatology and Rehabilitation Department, Faculty of Medicine,
Ain Shams University, for her precious advices and valuable observations.

I would like to express my great honor and thanks to **Prof. Dr. Dina Shawky Al-Zifzaf,** Professor in Physical Medicine,
Rheumatology and Rehabilitation Department, Faculty of Medicine,
Ain Shams University for her encouragement & expert supervision,
who spent much time and effort to guide and support me.

Special thanks go to Ass. Prof. Dr. Hossam Moussa Sakr, Assistant Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his help and experience.

Many thanks to all professors, staff and colleagues in our department, for offering help whenever I needed during this research.

Finally, I must thank my husband, mother, son, all members of my family and friends for their encouragement and support not only during the period of this research but also during my whole life.

Contents

Subjects	Page
• List of Abbreviations	I
• List of table	II
List of Figures	IV
• Introduction	1
Aim of the Work	4
Review of literature:	
Chapter 1: Anatomy and Biomechanics of the Anl	kle
Joint Ankle Sprain	5
Chapter 2: Ankle Sprain	15
Chapter 3: Treatment of Lateral Ankle Sprain	51
Patients And Methods	88
Results	134
Discussion	161
Summary and Conclusion	183
Recommendations	188
References	189
Arabic Summary	

List of Abbreviations

AITFL	Anterior Inferior Tibiofibular Ligament
ATFL	Anterior Talofibular Ligament
ВМІ	Body Mass Index
CAI	Chronic Ankle Instability
CFL	Calcaneofibular Ligament
CT	Computerized Tomography
FAI	Functional Ankle Instability
HVPC	High-Voltage Pulsed Current
IOL	Interosseus Ligament
IOM	Interosseus Membrane
LCL	Lateral Ankle Ligament Complex
MHz	Mega Hertz
mm	millimeter
mmHg	millimeter Mercury
MRI	Magnetic Resonance Imaging
MSU	Diagnostic Musculoskeletal Ultrasound
NSAIDs	Nonsteroidal Anti-Inflammatory Drugs
OLT	Osteochondral Lesion of the Talus
PITFL	Posterior Inferior Tibiofibular Ligament
PTFL	Posterior Talofibular Ligament
RICE	Rest, Immobilization, Compression
	Elevation
ROM	Range of Motion
RTP	Return to Play
SPSS	Statistical Package for Social Sciences
TENS	Transcutaneous Electrical Nerve
	Stimulation
US	Ultrasound
VAS	visual Analogue Scale

∠List of Table

List of Table

Tab. No.	Subject	Page
Table (1)	Weight and Height of the Patients	135
Table (2)	History of Musculoskeletal Injuries	136
Table (3)	Distribution of Recurrence of Ankle Sprain among Patients	137
Table (4)	Clinical Assessment of the Patients	139
Table (5)	Results of Balancing Tests before Rehabilitation	140
Table (6)	Results of Musculoskeletal Ultrasound Assessment of ATFL before Rehabilitation	141
Table (7)	Results of Musculoskeletal Ultrasound Assessment of CFL before Rehabilitation	141
Table (8)	Comparison between Balancing Tests before and after Rehabilitation	148
Table (9)	Comparison between Musculoskeletal Ultrasound before and after Rehabilitation for ATFL	149
Table (10)	Comparison between Musculoskeletal Ultrasound before and after Rehabilitation for CFL	149
Table (11)	Comparison between Dynamic Musculoskeletal Ultrasound before and after Rehabilitation	150
Table (12)	General Examination of the Delayed Responder	153
Table (13)	Clinical Assessment of the Delayed Responder and Delayed RTP Patients	154
Table (14)	Comparisons of Balance Assessment for the Delayed Responder Patients before and after Rehabilitation	155
Table (15)	Comparisons of Balance Assessment for the Delayed RTP Patients before and after Rehabilitation	156
Table (16)	Comparisons of Difference of Length of the ATFL Using Dynamic Musculoskeletal Ultrasound for the Delayed Patients before and after Rehabilitation	157
Table (17)	Results of Clinical Assessment for the Two Groups	159

≰List of Table

Tab. No.	Subject	Page
	Comparison of Results of Balance Assessment	160
Table (18)	before and after Rehabilitation in Acute and	
	Non-Acute Patients	
	Comparison of the Results of Dynamic	160
Table (19)	Musculoskeletal Ultrasound before and after	
	Rehabilitation in Acute and Non-Acute Patients	

List of Figures

Fig. No.	Subject	Page
Fig. (1)	Bones of the Foot	6
Fig. (2)	Foot terminology	7
Fig. (3)	Lateral ankle ligament	10
Fig. (4)	Deltoid ligament	11
Fig. (5)	Syndesmosis	12
Fig. (6)	Mechanisms for Ankle Sprains	22
Fig. (7)	Mechanism of Lateral Ankle Sprain	23
Fig. (8)	Palpation of ankle	27
Fig. (9)	Ottawa ankle rules	29
Fig. (10)	Squeeze test for syndesmotic injury	34
	External rotation stress test	34
	Radiograph of the normal right ankle	41
	Longitudinal sonogram shows ATFL	45
	Sonogram shows a normal CFL	45
	Sonogram of a recent ankle sprain	47
	Sonograms of ankle sprains	48
Fig. (17)	Athlete evaluated after an ankle sprain	48
	Sonogram shows the deltoid ligament	50
	Sonogram shows the anterior tibiofibular ligam	50
	A light weight air cushioned lower leg splint	57
Fig. (20)	with self-adhesive straps	
Fig. (21)	Lace-up ankle supports	62
Fig. (22)	Semi-rigid ankle supports	62
	Achilles stretching	72
	Clinician-assisted manual resistance exercise	76
Fig. (25)	Strength training with resistance tubing exercises	76
Fig. (26)	Balance exercises	80
	Plyometric training exercise: box	83
Fig. (28)	Plyometric training exercise: squat jump	84
Fig. (29)	Anterior Drawer Test: anterior force	92
Fig. (30)	Talar tilt test.	93
Fig. (31)	Single leg stance with eyes open.	95
Fig. (22)	High resolution B mode LOGIQ P5	96
Fig. (32)	ultrasonography.	
Fig. (33)	Musculoskeletal examination of the ATFL.	97
Fig. (34)	Musculoskeletal examination of the CFL.	99

€ List fo Figures

Fig. N	Vo.	Subject	Page
Fig. (3		Stress test to ATFL while doing musculoskeletal	100
Fig. (35))3)	examination	
Fig. (3	36)	Hinged ankle bracing	105
Fig. (3	37)	Open-basket-weave technique.	106
Fig. (3	38)	Non-weight bearing Achilles tendon stretch.	107
Fig. (3	_	Ankle taping	109
Fig. (4		Weight bearing calf stretch.	110
Fig. (4	11)	Isometric strengthening exercise to ankle muscle	112
11g. (4	+ 1 <i>)</i>	using contralateral foot	
Fig. (4	12)	Toe curl	112
Fig. (4		Toe raise	112
Fig. (4	14)	Calf raise	122
Fig. (4	15)	Walk on a straight line	113
Fig. (4	46)	Theraband isotonic strengthening exercise to ankle	115
Fig. (4	17)	Concentric strengthening exercise to ankle	115
Fig. (4	48)	Eccentric strengthening exercise to ankle	116
Fig. (4	10)	Concentric and eccentric strengthening exercise to	116
F1g. (4	1 9)	ankle	
	_	Lungs exercise	116
Fig. (5	51)	Double leg squats	116
Fig. (5	(52)	Heel walk.	119
116. (5			
		Single leg stance on balance with doing active	119
Fig. (5		movements that invoke perturbations while	
		maintained balance	110
Fig. (5	\4 \	Balance exercise using single leg stance on	119
		unstable surface with extended and flexed legs	110
Fig. (5		Walking on different surfaces bare feet (uneven surface and slope).	119
		Single leg squat	120
		Balance exercise using catch and throw weighted	120
Fig. (5		balls	120
Fig (5		Reaching exercises	120
		Alternating leg hoping	121
		Lateral, forward and backward hoping.	121
		Repetitive hoping in straight line.	121
		Repetitive hoping in zigzag line.	122
		Proprioception exercise.	122
O \		Core muscle strengthening exercise	123

€ List fo Figures

Fig.	No.	Subject	Page
Fig.	(65)	Squat Jumps	126
Fig.	(66)	Tuck jump.	126
Fig.	(67)	Power skipping	126
Fig.	(68)	Alternate leg bounding	126
Fig.	(69)	Figure of 8 running	129
Fig.	(70)	Side cuts	129
Fig.	(71)	Carioca step.	129
Fig.	(72)	The agility T-test	131
Fig.	(73)	Gender distribution among the participants	134
Fig.	(74)	Type of sport practiced by patients enrolled in the study	135
Fig.	(75)	Side of ankle injury.	133
Fig.	(76)	Grading of ankle sprain according to musculoskeletal ultrasound findings	141
Fig.	(77)	The right ATFL is seen to be mildly swollen with abnormal hypoechoic texture and active Doppler signals, picture of acutely sprained ATFL	143
Fig.	(78)	Normal CFL.	143
Fig.	(79)	The right ATFL after inversion stress.	144
Fig.	(80)	The left ATFL is seen to be thickened with abnormal heterogenous texture, picture of non-acute sprained ATFL.	144
Fig.	(81)	The left CFL is seen to be thickened with abnormal heterogenous texture, picture of non-acute sprained CFL.	145
Fig.	(82)	Comparison between Stability Tests before and after Rehabilitation Program in all patients.	147
Fig.	(83)	Comparison between pain severity at week 0, 4 and 8 after rehabilitation.	151
Fig.	(84)	Comparison between weakness at week 0, 4 and 8 after rehabilitation.	151
Fig.	(85)	Comparison between single leg stance at week 0, 4 and 8 after rehabilitation.	151

Introduction

In this day of an active society, musculoskeletal injuries are becoming more prevalent. The foot and ankle are among the most common sites for acute and chronic injuries in athletes and other physically active individuals (Hootman et al., 2007 and O'Driscoll et al., 2011).

Ankle sprains are common injuries that occur during physical activity, it constitute 85% of all ankle injuries and are the most frequently seen musculoskeletal injury seen by primary care providers (Hauser et al., 2010 and Young et al., 2013). It occurs with an incidence of one sprain per 10,000 people per day (Veillette, 2012). Ankle sprain is one of the most common sport-related injuries, which result in lost participation (*Hertel*, 2002). Sprained ankles have been estimated to constitute up to 30-40% of all injuries seen in sports medicine clinics (Young et al., 2013). Ankle sprain results in disability and time lost from work and activity resulting in an estimated 1.2 million physician visits per year (Sefton et al., 2009) and 12% of time lost in football is due to ankle injuries (Chan et al., 2011). Therefore, it is important to determine appropriate means of preventing these injuries.

The lateral ankle ligament complex includes the anterior talofibular ligament (ATFL), the calcaneofibular ligament (CFL), and the posterior talofibular ligament (PTFL). The ATFL is the weakest of the 3 lateral ankle

ligaments and is most frequently injured in ankle sprains (Ferran et al., 2009 and Chinn & Hertel, 2010).

Eighty percent of acute ankle sprains make a full recovery with conservative management, while 20% of acute ankle sprains develop mechanical or functional instability that ends in chronic ankle instability (CAI) (Chan et al., 2011). When ankle sprain occurs, damage not only occurs to the structural integrity of the ligaments but also to various mechanoreceptors in the joint capsules, ligaments, and tendons about the ankle complex (Olmsted et al., 2002).

The optimal treatment for ankle sprains remains uncertain. Ankle sprains are not similar, and may present with a variable clinical course. Neuromuscular functional training is aiming to restore joint range of motion, improve muscle strength & neuromuscular coordination of the ankle and return to functional level. A balance training program will significantly reduce the risk of ankle sprains (*McGuine & Keene*, 2006).

Predicting the time that an athlete can return to unrestricted sport activities following his injury remain significant challenge. There is no specific time frame that sprained ankle recover. The ligaments take at least six weeks to heal but muscle strength, ROM, proprioception and return to function can vary considerably (*Miller*, 2017). The estimate of when to return to play using clinical and

imaging techniques helps to stand the specific therapy and how long it might take for full recovery.

Musculoskeletal diagnostic ultrasound (MSU) is a simple, inexpensive, rapid and easily reproducible examination tool (*Lento & Primack*, 2008) and can serve as an excellent imaging modality for musculoskeletal disorders (*Khoury et al.*, 2007). MSU has been advocated for the evaluation of acute and chronic ankle ligament injuries because it allows noninvasive and dynamic assessment of the ankle (*Mei-Dan et al.*, 2009 and Chan et al., 2011). The diagnostic accuracy for ATFL tears by ultrasound is 95% and for CFL tears is 90% (*Peetrons et al.*, 2004).

Aim of the work

This work is aiming to:

- Detect the value of diagnostic musculoskeletal ultrasound as assessment tool of ankle sprains in athletes.
- Assess the improvement of rehabilitation of ankle sprain in athletes using diagnostic musculoskeletal ultrasonography.

.