THE EFFECT OF ELECTROCHEMICAL CORROSION ON METALS RELATED TO PETROLEUM INDUSTRY AND ITS ENVIRONMENTAL IMPACT

by

Ali Gomaa Ali Abd El-Aziz

B.Sc. in Electric Power Engineering, Ain Shams University, 1980M.Sc. in Environmental Science (Engineering Department),Ain Shams University, 2005

A thesis submitted as Partial fulfillment
of
The Requirements for the Doctor of Philosophy Degree
in
Environmental science

Department of Environmental Engineering Institute of Environmental Studies and Researches Ain Shams University

APPROVAL SHEET

THE EFFECT OF ELECTROCHEMICAL CORROSION ON METALS RELATED TO PETROLEUM INDUSTRY AND ITS ENVIRONMENTAL IMPACT

by

Ali Gomaa Ali Abd El-Aziz

B.Sc. in Electric Power Engineering, Ain Shams University, 1980
 M.SC. in Environmental science (Engineering Department)
 Ain Shams University, 2005

This Thesis Towards a Doctor of Philosophy Degree in Environmental Science has been Approved by:

	Name	Signature
1-	Prof. Dr. Mohamed Yousef Al-Kady Prof. of Chemistry – Ain Shams University	
2-	Prof. Dr. Saad El-Deen Mohamed Desouky Prof. of Petroleum Engineering, Egyptian Petroleu Institute	
3-	Prof. Dr. Ibrahim El Desouki Helal Prof. of Electric Power Engineering – Ain Shams U	University
4-	Prof. Dr. Ali Ahmed El-Bassoussi Prof. of Chemistry, Egyptian Petroleum Research	[nstitute

THE EFFECT OF ELECTROCHEMICAL CORROSION ON METALS RELATED TO PETROLEUM INDUSTRY AND ITS ENVIRONMENTAL IMPACT

by

Ali Gomaa Ali Abd El-Aziz

B.Sc. in Electric Power Engineering, Ain Shams University, 1980M.SC. in Environmental Science (Engineering Department), Ain ShamsUniversity, 2005

A thesis submitted as Partial fulfillment

of

The Requirements for the Doctor of Philosophy Degree

in

Environmental science

Department of Environmental Engineering Science

Under the supervision of:

1-Prof. Dr. Ibrahim El Desouki Helal Professor of Electrical Power Engineering, Faculty of Engineering, Ain Shams University 2-Prof. Dr. Ali Ahmed El-Bassoussi Professor of Chemistry, Egyptian Petroleum Research Institute 3-Mohamed Saaid Abd-Elhaliem Professor of Chemistry, Faculty of Engineering, Ain Shams University 4-Prof. Dr. Ismial Abd-Alrahaman Aiad

Professor of Chemistry, Egyptian Petroleum Research Institute

2011

DEDICATION

To my son....Shady

One day....Hopping that this modest thesis will encourage you to precede a magnificent and superior work.

ACKNOWLEDGMENT

The author wishes to express his sincere thanks and gratitude to **Prof. Dr. Ibrahim El Desouki Helal**, Professor of Electric Power Eng.,
Faculty of Eng., Ain Shams University for brilliant ideas that help put this work together, for his supervision and constant support throughout the course of this thesis. The author is greatly indebted to **Prof. Dr Ali A. El Bassoussi**, Professor of Petroleum Chemistry, Egyptian Petroleum Research Institute (EPRI) for suggesting the topic of the present research, continuous support as well as for valuable guidance. The author would like to thank Prof. Dr. **Mohamed S. Abd-Elhaliem**, Professor of Engineering Chemistry, Faculty of Eng., Ain Shams University, and Prof. Dr. **Ismial A. Aiad**, professor of Petroleum Chemistry, EPRI, for their help and advice throughout this work.

The author expresses his sincere thanks for **Prof. Dr Ahmed El-Sabagh**, Director Manager of the Egyptian Petroleum Research Institute, EPRI for providing the experimental facilities and his support and encouragement.

Special thanks go to **Prof. Dr. Magda Ebeid** for her sincere kindness and encouragement. Thanks are extended to all **Teaching Staff** at the Environmental Eng. Dept., Institute of Environmental Studies and Researches, Ain Shams University for their valuable lecturers.

Great and sincere thanks go to **Prof. Dr. Ahmad Abdel Aziz** Professor of Aut. Eng., Ain Shams University for his precious advice, continuous support and his valuable guidance. Many thanks for all my colleagues at EPRI for their help and support during this work especially, **Dr. Eng. Eman M. Noami** for her valuable help, support and tremendous effort.

Abstract

In our present study we are concerned with the electrochemical behavior of the steel alloy in the formation waters which delivered from different areas in the western and eastern desert in Egypt.

Two different types of steel samples, which utilized in the pipeline manufacture, were used in our experimental studies. On the other hand, six formation water samples were under test, three from the eastern desert and the other three from the western desert.

Our study was divided into three parts. In the first part the Open Circuit Potentials (OPC) were measured against standard calomel electrode (SCE). The variation in the OCP from cathodic to anodic and vice versa, explains the active behavior of the corrosion at the interfacing layer between the metal and solution.

In the second part, we studied the variations of the weight loss for the two coupons corresponding to the time of immersion. The obtained data showed three stages, the first was characterized by the increase in weight loss by time, the second clarified sharp decrease in weight loss by time, and the third stage revealed sudden increase in weight loss.

In the third part of the study, the measurements of the potentiodynamics were completely carried out and the obtained data clarified that the coupons immersing for long time leads to rapidly corrosion and formatted Fe (OH) 2 which responsible for the corrosion rates. Therefore, one important reason for the increasing of corrosion rate value attributed to the initial formation of pits on the surface of the steel.

CONTENTS

	Page
CHAPTER (1) INTRODUCTION	1
1-1 General	1
1-2 Fundamentals of Corrosion	3
1-3 What is Corrosion?	4
1-4 The Many Different Forms of Corrosion	6
1-4-1 Uniform Corrosion	7
1-4-2 Localized Corrosion	8
1-4-2-1 Microscopic Forms	8
1-4-2-2 Inter-granular Corrosion	8
1-4-2-3 Stress-Corrosion Cracking	9
1-4-3 Macroscopic Forms	9
1-4-3-1 Galvanic Corrosion	9
1-4-3-2 Erosion Corrosion	10
1-4-3-3 Crevice Corrosion	10
1-4-3-4 Pitting Corrosion	10
1-4-3-5 Exfoliation and Selective Leaching	10
1-5 Corrosion Environment	11
1-5-1 Atmosphere	11
1-5-2 Soils	11
1-5-3 Microbes and Biofouling	12
1-5-4 Natural Waters	12
1-5-5 Sea Water	13
1-6 Costs of Corrosion	13
1-7 Corrosion Science	14
1-8 Corrosion Scientist	14
1-9 Corrosion Engineer	14

1-10 Importance Of Corrosion	15
1-11 Corrosion Mechanisms And Influencing Factors	15
1-12 Corrosion Required Energy	16
1-13 Energy Transfer During Aqueous Corrosion	16
1-14 Characteristic of the Basic Corrosion Cell	17
1-15 Anodic Half-Cell Reactions	19
1-16 Cathodic Half-Cell Reactions	20
1-17 Standard Half-Cell Potentials	22
1-18 Nonstandard Half-Cell Potentials	23
1-19 Electrical Properties of Corrosion Cell	24
1-20 Electrode Potential and the Direction of Current	26
1-21 Electrode Polarization	27
1-22 Polarization Curves and Mixed Potential Theory	27
1-23 Experimental Determination of Corrosion Current	29
1-24 Corrosion Cells Created by Difference in Electrodes	33
1-25 Tabulation of Relative EMF or Solution Potentials of Metals	34
1-26 Corrosion Cells Created by Differences in Electrode Environments	37
1-26-1 Different Oxygen Concentration	37
1-26-2 Differential Concentration of the Electrolytes	37
1-26-3 Temperature Difference	37
1-27 Corrosive Agents in the Environment	38
1-27-1 Effect of Oxygen	38
1-27-2 Effect of Hydrogen Sulfide	39
1-28 Relative Corrosiveness of O2, CO2 and H2S	40
1-29 The Contribution of Dissolved Salts	41
1-30 Fundamentals of Corrosion Slow Down Methods	43
1-31 Surface Barriers	43

1-32 Cathodic Protection	44
1-33 Theory of Cathodic Protection	44
1-34 Impressed Current Systems	46
1-35 Effect of Anode Distance From Structure	48
1-36 Measurement of Structure Potentials	49
1-37 IR Drop Method	50
1-38 Stray Current Effects	52
1-39 Sources of Stray Currents	53
1-40 Anodic Protection	57
CHAPTER (2) ENVIRONMENTAL IMPACTS OF CORROSION	59
2-1 Waste Management	59
2-1-1 Strategy for Waste Management	59
2-1-2 Waste Minimization	62
2-1-3 Recycling	63
2-1-4 Reduction, Reuse and Recycling - The 5 Rs	64
2-2 Iron Mining	66
2-2-1 Environmental Impact of Mining	66
2-2-2 Acid Mine Drainage	67
2-2-3 Grade Control	68
2-2-4 Arsenic Contamination	68
2-2-5 Toxic Effects of Mining	69
2-2-6 Recycling Economic Impact	70
2-3 Carbon Dioxide and the Greenhouse Effect	70
2-4 CO ₂ Emission in Iron and Steel Industry	72
2-5 Environmental Sustainability of Steel	74
2-6 The Energy Awareness	76
2-7 Wastes and Emissions Minimization	76
2-7-1 Reduction	77

2-7-2 Recycling	80
2-7-3 Pretreatment and Recovery	80
2-8 Global Warming	81
2-9 Dioxins and the Environment	81
2-10 PAH Emission	84
2-11 Cadmium	86
2-12 Waste Management Strategy	86
2-13 Energy Management	87
2-13-1 CO ₂ Removal	87
2-14 Utilization of Hydrogen Energy	88
2-15 Renewable Energy Resources	89
2-16 Environmental Legislations	90
2-17 Life Cycle Assessment	91
2-18 Life Cycle Inventory	92
2-19 Contamination Due to Oil Leakage	94
2-20 Corrosion Audit and Corrosion Control	95
CHAPTER (3) LITERATURE SURVEY	100
CHAPTER (4) EXPERIMENTAL	121
4-1 Materials	121
4-2 Steel Alloy	121
4-3 The Used Instrument	122
4-4 Measurement of Open Circuit Potential	125
4-5 The Measurement of the Potentiodynamics	126
4-6 The Corrosion Current Density	126
4-7 Corrosion- Time Relationships	126
4-8 Pitting Potential(E _{pitt})	127
4-9 The Variation in the Polarization Resistance(Rp)	127
4-10 Weight – Loss Measurements	127

CHAPTER (5) RESULTS AND DISCUSSIONS	
5-1 Measurement of Open Circuit Potential	128
5-2 The Measurements of the Potentiodynamics	129
5-3 Weight Loss Measurements	133
CHAPTER (6) CONCLUSIONS	157
SUMMARY	160
REFERENCES	162
ARABIC ABSTRACT	182

LIST OF TABLES

Table 1-1 Standard Electrode Potentials for Some Elements	26
Table 1-2 Relative Single Electrode Potential	35
Table 1-3 Methods Used to Slow Down Corrosion in Oil Industry	43
Table 1-4 Quantitative Damage by Stray Currents	55
Table 2-1 Energy use and CO ₂ emission in the EU-15 industry	74
Table 2-2 Japanese Finished Steel Production 1999 (MITI 2000)	79
Table 2-3 Classification of Steel and Iron Industries	86
Table 2-4 Average Values of Average Corrosion Penetration on Steel Piles and Steel Sheet Piles	96
Table 4-1 Elemental Compositions of the Two Steel Alloy Samples	121
Table 4-2 The Six Samples Used for Weight Loss Test	122
Table 4-3 Physicochemical Analysis of Formation Water Samples	123
Table 5-1 Open Circuit Potentials of Coupon – I in the Formation Waters from Eastern and Western Desert at Ambient	135
Table 5-2 Open Circuit Potentials of Coupon–II in the Formation Waters from Eastern and Western Desert at Ambient	137
Table 5-3 Effect of the Immersion Time on the Open Circuit Potentials of Coupon–I in the Formation Waters from Eastern and Western Desert	139
Table 5-4 Effect of the Immersion Time on the Open Circuit Potentials of Coupon – II in the Formation Water from Eastern and Western Desert	141
Table 5-5 Corrosion Potential ($E_{corr.}$) of the Two Coupons, I & II in the Formation Waters from Eastern and Western Desert	143
Table 5-6 Corrosion Current Density of the Two Coupons, I & II in the Formation Waters from Eastern and Western Desert	145

Table 5-7 Corrosion Rates of the Two Coupons I & II in the Formation Waters from Eastern and Western Desert	147
Table 5-8 Pitting Potential (E _{pit}) of Coupons I & II in the Formation Waters from Eastern Desert	149
Table 5-9 Polarization Resistance of Coupon –I in the Formation Waters From Eastern and Western Desert	151
Table 5-10 Polarization Resistance of Coupon – II in the Formation Waters From Eastern and Western Desert	153
Table 5-11 Weight Loss of Coupons I & II in the Formation Waters from Eastern and Western Desert	155

LIST OF FIGURES

Figure 1-1 Types of Corrosion Damages on Metal	3
Figure 1-2 Metallurgy in Reverse	6
Figure 1-3 The Different Forms of Corrosion	7
Figure 1-4 Representation of the Basic Corrosion Cell	19
Figure 1-5 Schematic Representation of Corrosion cell as an Electrical Circuit	24
Figure 1-6 Polarization Diagram of Zinc Corroding in Acid	29
Figure 1-7 Electric Circuit for Cathodic Polarization Measurement	30
Figure 1-8 Relationship between "E" and "Log I"	31
Figure 1-9 Anodic Polarization Plot for an Active-Passive Metal	32
Figure 1-10 Comparative corrosiveness of the Three Common Gases in Water solutions	40
Figure 1-11 Solubility of Oxygen in Water Solutions of Sodium Chloride in Equilibrium with Air	42
Figure 1-12 Corrosion Rates of Carbon Steel in Aerated Salt Waters	42
Figure 1-13 Sacrificial Anode on Buried Pipeline	46
Figure 1-14 Impressed Current CP System on a Pipeline	49
Figure 1-15 Circuit of Rectifier	49
Figure 1-16 Measurement of Pipe-to-Soil Potential on a Pipeline	50
Figure 1-17 IR Drop or Current Flow Method for Detecting Anodic Area	51
Figure 1-18 Interference Bond on Insulating Flange at Catholically Protected Well Casing	52
Figure 1-19 Current Corrosion of Buried Pipeline	54
Figure 1-20 Stray-Current Damage to Ship by Welding Generator	55
Figure 1-21 Effect of Current Flowing Along Pipeline on Corrosion near Insulated	55

Figure 1-2	2 Stray Currents Resulting from Cathodic Protection	56
Figure 1-2	3 Stray Currents Resulting From a Cathodic Protection System	56
Figure 2-1	Waste Management	61
Figure 2-2	Product Systems from a Life Cycle Perspective	96
Figure 2-3	Ecological Footprints of Iron and Steel Productions	97
Figure 2-4	Emissions of the Product Systems Included in the LCA	98
Figure 2-5	Framework for the Total Environment Impact Assessment of Production Stages	99
Figure 4-1	Picture of the Potentiostate Galvanostate Model Volta-Lab-40	123
Figure 4-2	Schematic Diadram of Potentiostate Circuit	125
Figure 5-1	Open Circuit Potentials of Coupon – I in the Formation Waters from Eastern and Western Desert at Ambient	136
Figure 5-2	Open Circuit Potentials of Coupon – II in the Formation Waters from Eastern and Western Desert at Ambient	138
Figure 5-3	Effect of the Immersion Time on the Open Circuit Potentials of Coupon – I in the Formation Waters from Eastern and Western Desert	140
Figure 5-4	Effect of the Immersion Time on the Open Circuit Potentials of Coupon – II in the Formation Water from Eastern and Western Desert	142
Figure 5-5	Corrosion Potential ($E_{corr.}$) of the Two Coupons, I & II in the Formation Waters from Eastern and Western Desert	144
Figure 5-6	Corrosion Current Density of the Two Coupons, I & II in the Formation Waters from Eastern and Western Desert	146
Figure 5-7	Corrosion Rates of the Two Coupons I & II in the Formation Waters from Eastern and Western Desert	148