

Comparative Study between General versus Spinal Anesthesia on Fetal Outcome in Elective Cesarean Section

Thesis

Submitted for Partial Fulfillment of the Master Degree in Anesthesiology

By

Abdul-Rahman Mohamed Adly

M.B.B.Ch, Faculty of Medicine, Ain Shams University

Under Supervisors

Prof. Dr. Mervat Mohamed Marzouk

Professor of Anesthesia, Intensive Care & Pain Management Faculty of Medicine – Ain Shams University

Prof. Dr. Khaled Mohamed Maghawry

Professor of Anesthesia, Intensive Care & Pain Management Faculty of Medicine – Ain Shams University

Dr. Marwa Ahmed Khairy

Lecturer of Anesthesia, Intensive Care & Pain Management Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2018

سورة البقرة الآية: ٣٢

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

No words could express my deepest thanks and appreciation to Prof. Dr. Mervat Mohamed Marzouk, Professor of Anesthesiology, ICU and Pain Management, Faculty of Medicine, Ain Shams University, for inspiring me with the idea of this work. Her patience, precious advice and guidance enlightened my way throughout this work.

I want also to express my profound gratitude to **Prof.**Dr. Khaled Mohamed Maghawry, Professor of

Anesthesiology, ICU and Pain Management, Faculty of Medicine, Ain Shams University, for his patience, valuable advice and continuous help in completing this work.

I am also deeply indebted to Dr. Marwa Ahmed Khairy, Lecturer of Anesthesiology, ICU and Pain Management, Faculty of Medicine, Ain Shams University, for her kind help, guidance, useful advices, continuous encouragement and support all through my entire work.

Finally, my deepest thanks to all my family especially my wife Noura and my daughter Fyrouzy and colleagues who helped me in the production of this work.

Contents

Subjects	Page
List of abbreviations List of figures List of tables	V
• Introduction	1
Aim of the Work	4
• Review of Literature	
◆ Chapter (1): Maternal physiological considerations	5
◆ Chapter (2): Fetal physiological considerat	ions13
◆ Chapter (3): Cesarean section anesthesia	30
◆ Chapter (4): General principles of neonatal resuscitation	
Patients and Methods	72
• Results	80
• Discussion	89
Conclusion and Recommendations	101
• Summary	102
• References	104
Arabic Summary	

List of Abbreviations

ABP	Arterial blood pressure
ACTH	Adrenocorticotropic hormone
BPM	Beat per minute
BP	Blood pressure
CHD	congenital heart diseases
CNB	Central neuraxial blockade
CNS	Central nervous system
CO2	Carbon Dioxide
CPAP	Continuous positive airway pressure
CS	Cesarean Section
CSE	Combined spinal–epidural
CSF	Cerebro-spinal fluid
DA	Ductus-arteriosus
EBP	Epidural blood patch
ELBW	Extremely low birth weight
ETCO ₂	End-tidal carbon dioxide
ETT	Endotracheal tube
FRC	Functional residual capacity
GA	General anesthesia
HCO ₃	Bicarbonate
H_2CO_3	Carbonic acid
HR	Heart rate
IV	Intravenously

List of Abbreviations

kg	Kilogram
L	Liter
LA	Local anesthetic
LP	Lumbar puncture
MAC	Minimum alveolar concentration
μg	Microgram
mEq	Milli equivelant
mg	Milligram
mmHg	Millimeter mercury
NA	Neuraxial anesthesia
NICU	Neonatal intensive care unit
NIBP	Non invasive blood pressure
NRAS	The Neonatal Resuscitation Adaptation Score
NRP	The Neonatal Resuscitation Program
NS	Normal saline
O_2	Oxygen
PaCO ₂	Arterial Partial Pressure Of Carbon Dioxide
PaO ₂	Arterial Partial Pressure Of Oxygen
PDPH	Post-dural puncture headache
PEEP	Positive End Expiratory Pressure
pН	Hydrogen ion measure
рK	Acid dissociation constant

List of Abbreviations

PPV °	Positive pressure ventilation via either mask or endotracheal tube
PT	Prothrombin time
PTT	Partial thromboplastin time
RC	Respiratory center
SpO2	Saturation of Oxygen in The Arterial Blood
SVR	Systemic vascular resistance

.

List of Figures

No.	<u>Figure</u>	<u>Page</u>
1	Fetal circulation	16
<u>2</u>	Difficult obstetric airway algorithm	55
<u>3</u>	Obstetric management after failed tracheal intubation	56
<u>4</u>	Newborn life support algorithm	62
<u>5</u>	Treatment for meconium-stained amniotic fluid	63
<u>6</u>	NRAS1 regarding general group and spinal group	81
7	Heart rate regarding general group and spinal group	83
8	Blood pressure at 3 min regarding general group and spinal group	86
9	Blood pressure at 6 min regarding general group and spinal group	86
<u>10</u>	Maternal satisfaction questionnaire	88

List of Tables

No.	<u>Table</u>	<u>Page</u>
<u>1</u>	Description of the Apgar and NRAS Scores	26
2	Factors associated with need for neonatal resuscitation	59
<u>3</u>	Description of NRA Score	77
4	The mother satisfaction questionnaire	78
<u>5</u>	Comparison between General and spinal groups as regards demographic data	80
<u>6</u>	Comparison between General and spinal groups as regards neonate	81
7	Comparison between General and spinal groups as regards mother's heart rate	82
<u>8</u>	Comparison between General and spinal groups as regards mother's O2saturation	84
9	Comparison between General and spinal groups as regards mother's blood pressure	85
<u>10</u>	Comparison between General and spinal groups as regards time of anesthesia and total time	87
<u>11</u>	Comparison between General and spinal groups as regards mother's questionnaire	88

Introduction

The rate of Cesarean Section (CS) has been increased rapidly during the last two decades to reach 50% in some countries of the world. Many factors have contributed to this rise including improved surgical and anesthetic techniques and reduced risk of post-operative complications (*Villar et al.*, 2006).

The focus on the effect of type of anesthesia used in CS on the short term neonatal outcome has been recently increased with different perspectives of the advantages and disadvantages of the type of anesthesia used in CS (*Linton et al., 2004*).

For the past five decades, the Apgar score has been the primary tool used when evaluating the clinical status of neonates at birth. It has been used one and five minutes to predict later neonatal morbidity and outcome. It is a composite measure of breathing effort, heart rate, muscle tone, reflexes and skin color. It is an indicator of the newborn's need for medical attention shortly after birth. Each of these is given a score of 0, 1 and 2. Neonates with a score ≥ 7 are considered normal (AAP, 2006).

The Neonatal Resuscitation Program (NRP) recommends a standardized and simple scoring system to assist in identification of neonatal health status and provides need to resuscitation regardless of gestational age (*Perlman et al.*, 2012).

The Neonatal Resuscitation Adaptation Score (NRAS), the new score uses 5 objective parameters. Two parameters assess the newborn's cardiovascular status: heart rate and cardiovascular support. Two measures assess the respiratory status: supplemental oxygen and respiratory support. One parameter assessing the neurological status: palmar grasp reflex (*Futagi et al.*, 2012).

Internationally, obstetric anesthesia guidelines recommend regional blocks over general anesthesia (GA) for most cesarean sections (*Eltzching et al.*, 2003).

The anesthetic plan for cesarean delivery should take into account the well-being of two persons: the mother and the fetus. Regional anesthesia is the most common method of anesthesia for delivery because it allows the mother to be awake and immediately interact with her baby. It is also safer for the mother than general anesthesia (*Bloom et al.*, 2005).

Introduction

In contrast to regional anesthesia, general anesthesia (GA) offers a very rapid and reliable onset, control over the airway and ventilation and potentially less hypotension. The major adverse fetal effect of regional anesthesia and its sympathetic blockade is uteroplacental hypoperfusion which leads to an acute fall in intervillous blood flow with the potential for fetal acidemia (*Bucklin et al.*, 2005).

So, umbilical cord blood gases analysis is considered a gold standard to assess the acid base status and uteroplacental performance, especially in high risk pregnancies and the possibility of fetal depression (*Littleford*, 2004).

Aim of the Work

This study aimed at comparing general anesthesia versus spinal anesthesia as regard their effects on Neonatal Resuscitation Adaptation Score, acid-base status of the newborn as a primary outcome and on vital signs of the mother for elective cesarean delivery as a secondary outcome.

Chapter (1)

Maternal Physiological Consideration

Normal pregnancy involves major physiological and anatomical adaptation by maternal organs. It is important that anesthetists involved in the care of the pregnant woman to understand these changes, to provide safe maternal anesthetic care which is compatible with safe delivery of the baby (*Duvekot and Peeters*, 2009). Pregnancy affects virtually every organ system; many of these physiological changes appear to be adaptive and useful to the mother in tolerating the stresses of pregnancy, labor and delivery. The maternal physiologic changes during pregnancy contribute to increased anesthetic risk for both the mother and fetus (*Morgan and Mikhail*, 2006).

Cardiovascular changes:

Changes in blood volume: Expansion of the plasma volume and increase in red blood cell mass begin as early as the fourth week of pregnancy, peak at 28 to 34 weeks of gestation, and then plateau until parturition. Plasma volume expansion is accompanied by a lesser increase in red cell volume. As a result, there is a mild reduction in

hematocrit, with peak hemodilution occurring at 24 to 26 weeks (*Jensen et al.*, 2002).

in vascular resistance and blood **pressure:** The arterial blood pressure (ABP) typically falls early in gestation and is usually 10 mmHg below baseline in the second trimester. In the third trimester, the diastolic blood pressure gradually increases and may normalize to nonpregnant values by term. The factors responsible for the vasodilatation are incompletely understood, but one of the major findings is decreased vascular responsiveness to the pressor effects of angiotensin II and norepinephrine. Several additional mechanisms for the fall in vascular resistance have been proposed: increased endothelial enhanced nitric oxide prostacyclin and production (Thompson and Weiner, 1997).

Changes in Cardiac output: The cardiac output rises 30 to 50 percent (1.8 L/min) above baseline during normal pregnancy; one-half of this increase occurs by 8 weeks of gestation. The elevation in cardiac performance results from changes in three important factors that determine cardiac output: preload is increased due to the associated rise in blood volume, afterload is reduced due to the decline in systemic vascular resistance & maternal heart rate rises by 10 to 15percent above base line (Semin, 2009).