

ELECTROCHEMICAL DIAGNOSIS OF GALVANIC CORROSION IN OIL WELL STRINGS

By

Nabil Adil Tayeb Ubaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
Petroleum Engineering

ELECTROCHEMICAL DIAGNOSIS OF GALVANIC CORROSION IN OIL WELL STRINGS

By Nabil Adil Tayeb Ubaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
In
Petroleum Engineering

Under the Supervision of

Prof. Dr. S. M. El-Raghi	Prof. Dr. Abdel-Alim H. El-Sayed		
Prof. of Metallurgical Engineering Faculty of Engineering-Cairo University	Prof. of Petroleum Engineering Faculty of Engineering-Cairo University		

Dept. Of MPM (Mining, Petroleum and Metallurgical Engineering) FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

ELECTROCHEMICAL DIAGNOSIS OF GALVANIC CORROSION IN OIL WELL STRINGS

By Nabil Adil Tayeb Ubaid

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

In Petroleum Engineering

Approved by the	
Examining Committee	
Prof. Dr. S. M. El-Raghi,	Main Supervisor
Prof. of Metallurgical Engineering	_
Faculty of Engineering-Cairo University	
Prof. Dr. Abdel-Alim H. El-Sayed,	Supervisor
Prof. of Petroleum Engineering	
Faculty of Engineering-Cairo University	
Prof. Dr. Fouad Khalaf Mohamed,	Member
Prof. of Petroleum Engineering	
Faculty of Engineering-Cairo University	
Prof. Dr. Muhamed Esam Muhamed Kandil	Member
Projects General Director, GUPCO	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer:** Nabil Adil Tayeb Ubaid

Date of Birth: 1/1/1962 Nationality: Sudanese

E-mail: tayeb.nabil@gmail.com

Phone.: 00201008300986

Address: El-Haram, Giza, Egypt

Registration Date: 16/3/2010 Awarding Date: //

Degree: Doctor of Philosophy

Department: Mining, Petroleum and Metallurgy

Supervisors: Prof. Dr. S. M. El-Raghi,

Prof. Dr. Abdel-Alim H. El-Sayed

Examiners: Prof. Dr. S. M. El-Raghi,

Prof. Dr. Abdel-Alim H. El-Sayed, Prof. Dr. Fouad Khalaf Mohamed,

Prof. Dr. Muhamed Esam Muhamed Kandil (Projects General Director, GUPCO)

Title of Thesis: Electrochemical Diagnosis of Galvanic Corrosion in Oil

Well Strings

Key Words: Casing, Tubing, Drillpipe, Galvanic corrosion, NDT

Summary:

Manufacturing and standards permit producing of oil well pipes holding various microstructures and stresses on their inner and outer walls, this assumed to be insignificant in premature string's failures. Full-Ring specimen was approved to be best representative of tubular good's corrosion. Tubular Dual Wall Corrosion Cell Kit and Full Ring Galvanic Corrosion Kit were innovated and effective galvanic corrosion was detected between walls. The study proposed introducing Jointal Corrosion Stability Index to tubular specifications, pipe joints with low index shall be excluded before marketing or assembling in strings.

Acknowledgements

I start with the name of Allah Who is the most gracious and most merciful. I am very thankful to Allah for his blessing and guidance to give me strength to achieve and finish this milestone in my life.

I would like also to express my heartfelt thanks to my supervisors, Prof. Abdel-Alim H. El-Sayed and Prof. Saad M. El-Raghi, Mining, Petroleum and Metallurgical Engineering Dept.MPM, Faculty of Engineering, Cairo University. Prof. El-Sayed, I will forever be thankful for your guidance, encouragement, endless help and support towards the completion of this work. Prof. El-Raghi, you have been a tremendous mentor for me. I would like to thank you for encouraging my research out of my basic specialty as a petroleum engineer and allowing me to grow as a metallurgical and electrochemical researcher. Your patience and advice on both research, as well as on my career have been invaluable. I hope that I could be as lively, enthusiastic, and energetic as Prof. El-Raghi and to someday be able to manage an audience as well as he can.

I would also like to thank my committee members, Professor Fouad Khalaf and Professor M. Essam Kandil for serving as my committee members and for letting my defense be an enjoyable moment, and for your brilliant comments and suggestions, thanks to you.

I would like also to thank Prof. Randa Abdel-Karim the director of Metal Surfaces and Corrosion Laboratory, MPM Dept., Faculty of Engineering, Cairo University for her guidance and permission to carry out the experimental work and use of the laboratory's electrochemical devices and facilities. Thanks are extended to the entire laboratory's staff and the researchers who helping me in one way or another during my three years continuous experimental work.

I also would like to express my grateful appreciation to Dr. Hamed Muhammed Jassim Professor of mining engineering, Faculty of Engineering, Koya University for his detailed linguistic revision of the thesis.

My thanks are also extended to the directors, engineers and technicians of the metallurgical test laboratories, MPM Dept., Faculty of Engineering, Cairo University for their help in carrying out the mechanical, chemical and microstructural tests.

Particular thanks are extended to SINO THRWA DRILLING COMPANY which supplied the pipe material to the testing program.

I would like also to express my heartfelt thanks to Mr. Hushyar Rasoul who enabled my official study leave by mortgaging his valuable house to me. Thanks also extend to my faithful friends Mr. Ali M. Ahmad, Dr. Abdolah Abdolkareem, Dr. Hussein Ali, Dr. Lukman M. Gardi and Kakarash E. Gardi for their encouraging and financial support. At the end, I express my regards and blessings to all those who supported me in any way concerning this work.

Special thanks to my family. Words cannot express how grateful I am to my beloved wife Mahera for her support. I am deeply indebted to my mother for all of the sacrifices. Your prayer for me was what sustained me thus far.

Dedication

I dedicate this work to those who believe in human dignity over religious, races and nations, to those who feel pain for every tear drops worldwide and please for any smile drawn on any lip overseas.

Table of Contents

Title		Page
ACKNOV	WLEDGEMENTS	I
DEDICA	TION	II
TABLE (OF CONTENTS	III
LIST OF	TABLES	VII
	FIGURES	
	CLATURE	
ABSTRA	CT	XIII
CHAPTE	IR 1	
INTROD	UCTION	2
1.1.	BACKGROUND	2.
1.2.	RESEARCH METHODOLOGY	
1.3.	OBJECTIVE	
СНАРТЕ	RR 2	
LITERA	ΓURE REVIEW	6
2.1.	CORROSION SCOPE AND COST IN OIL INDUSTRY	6
2.2.	OIL WELL STRING'S CORROSION MEDIA	7
2.3.	OIL WELL STRING'S STEEL NATURE	8
2.4.	OIL WELL STRING'S DESIGN	9
2.4.1.	Drill String	9
2.4.2.	Casing String	11
2.4.3.	6 6	
2.5.	OCTG JOINTS SPECIFICATIONS AND MORPHOLOGY	13
2.6.	OCTG MANUFACTURING	15
2.7.	OCTG HANDLING AND LOADS	20
2.8.	IN-SITU LOAD (POINT LOAD)	20
2.9.	CORROSION OF OCTG	21
2.9.1.	Corrosion Definition	21
2.9.2.	Electrochemical Cell.	21
2.9.3.	General Corrosion of Oil Well Strings	22
2.10.	CORROSIVE AGENTS REACTIVITY DOWN-HOLE	23
2.10.1		
2.10.2	36	
2.10.3	2	
2.10.4	, c	
2.10.5	Strong Acids (direct chemical attack)	26

2.10.6.	Biochemical Sulfide	
2.10.7.	Salinity	27
2.11. Co.	RROSION ALTERING FACTORS AND TYPES	27
2.11.1.	Electrolytic Corrosion Altering Factors	27
2.11.1.1.		28
2.11.1.2.	Dissolved Gas Concentration and Partial	28
2.11.2.	Environmental Factors Altering Corrosion Process	29
2.11.2.1.	Pressure Effect	29
2.11.2.2.	Temperature	30
2.11.2.3.	Velocity Effect	
2.11.3.	Mechanical Factors Altering Corrosion Precess	
2.11.3.1.	Corrosion Fatigue	
2.11.3.2. 2.11.3.3.	Chloride Stress Cracking (CSC)	
2.11.3.4.	Stress Corrosion Cracking	
2.11.4.	Inter Granular Corrosion Altering Factors	
2.11.5.	Galvanic Current Corrosion Altering Factor	
2.11.5.1.	Bi-Metallic Galvanic Corrosion	
2.11.5.2.	Bi-Metallurgic Galvanic Corrosion	
2.11.5.3.	Bi-Environmental Galvanic Corrosion	
2.11.5.4.	Bi-Concentration Galvanic Corrosion	
2.11.5.4	TI	
2.11.5.4	TI	
2.11.5. ₄ 2.11.5. ₄	TI TI	
2.11.6.	Stray-Current Corrosion	
2.11.7.	Earth Current (Natural Current)	
	· · · · · · · · · · · · · · · · · · ·	
	ONO-METALLIC GALVANIC CORROSION THEORY	
2.12.1.	Corrosion Potential and Corrosion Kinetics	
2.12.2.	Electrolyte Properties	
2.12.3.	Dissolved Oxygen and Fluid Velocity	
2.12.4.	Fluid Conductivity	
2.12.5.	Exposed Areas	
2.12.6.	Condition of Surface	
2.13. Mc	ONO-JOINT DIFFERENTIAL CORROSION POTENTIAL	43
2.13.1.	MJDGC due to OCTG COMPOSITION	43
2.13.2.	MJDGC due to RESIDUAL STRESS	44
2.13.3.	MJDGC due to MICROSTRUCTURE	47
2.13.4.	MJDGC due to Mechanical and Dimension Tolerance	
2.13.5.	Differential Cooling at Heat Treatment	
	Effect of Misrepresentative Specimens on Tubular Go	
	THE CONTRIBUTE RESERVANTIVE BY LICENSEAS GOVERNMENT OF	
	NCLUSIONS OF LITERATURE REVIEW	
2.13. CO	NCLUSIONS OF LITERATURE REVIEW	
CHAPTER 3		
EXPERIMEN	NTAL	52
3.1. Eli	ECTROCHEMICAL TEST SPECIMEN	52
3.1.1.	Traditionally Cut Specimens	53
3.1.1.1.	Cylinder Segment Shape Specimen	
3.1.1.2.	Cuboid Shape	54

3.1.2.	O-Ring Specimen	54
3.1.3.	Full-Ring Specimen	55
3.1.4.	1.1.4. Steel Analysis Test Specimen	56
3.2.	PREPARATION OF TEST SPECIMEN	56
3.3.	STEEL ANALYZING TECHNIQUES	57
3.3.1.	Microstructure	57
3.3.2.	Hardness Measurement	58
3.3.3.	Chemical Composition	59
3.4.	ELECTROCHEMICAL DIAGNOSIS	60
3.4.1.	Corrosion Rate Measurements	60
3.5.	FULL-RING ELECTROCHEMICAL MEASUREMENT	62
3.5.1.	Tubular Dual Wall Corrosion Cell Kit Design	62
3.5.2.	Data Logging System	63
3.5.3.	Full-Ring Corrosion Rate Measurements	64
3.5	5.3.1. First Trial	64
	5.3.2. Second Trial	64
	5.3.3. Third Trial 5.3.4. Fourth Trial	65
3.5.4.	Full-Ring Specimen Potentio-scanning	66 66
3.5.5.	Environmentally Controlled Galvanic Corrosion Measurements	
3.5.6.	Dynamic Environmentally Controlled Rig System	
3.5.7.	Dynamic Galvanic Corrosion Test Running Set	
CHAPTE	R 4	
RESULT	S AND DISCUSSION	73
4.1.	OCTG SAMPLES MORPHOLOGY AND PROPERTIES	
4.1.1.	Morphology	
4.1.2.	Chemical Composition	
4.1.3.	Hardness	
4.1.4.	Metallography	
4.1.5.	Physical Residual Stress	
4.2.	SMALL SCALE CORROSION RATE VOLTAMETRY	
4.3.	FULL- RING GENERAL CORROSION RATE MEASUREMENTS	
4.4.	FULL-RING SPECIMEN EVALUATION BY POTENTIO-SCANNING	
4.4.1.	Free Immersed Full-Ring Test	
4.4.2.	Bottom Closed Full-Ring Test	
4.4.3.	Full Closed Full-Ring Potentioscanning	87
4.5.	FULL-RING OPEN CIRCUIT POTENTIAL	87
4.6.	TUBULAR GALVANIC CORROSION	88
4.6.1.	Galvanic Corrosion at Static Condition	88
4.6.2.	Dynamic Tests Running Problems	90
4.7.	VELOCITY EFFECT ON MJDGC	90
4.7.1.	Relative Velocity Effect on Galvanic Corrosion at Fixed Flow Rate	90
4.7.2.	NaCl Effect on Galvanic Corrosion	93
4.7.3.	Mixed Grade Galvanic Corrosion	95
4.7.4.	Fluid Path Geometry Effect on Galvanic Corrosion	97
4.7.5.	Sucker Rod-Casing Galvanic Corrosion	98

4.7.6. Temperature Effect on Tubular's Galvanic Corrosion		99
4.7.7.	Variable Flow Rate	100
4.8.	DISCUSSION	101
СНАРТЕ	R 5	
CONCLU	SIONS AND RECOMMENDATIONS	109
5.1.	Conclusions:	109
5.2.	RECOMMENDATIONS	109
REFERE	NCES	111
الملخص		1

List of Tables

Table 2.1: Some API and Non-API OCTG grades	.14
Table 2.2: Some API and Non-API OCTG grades manufacturing method	
Table 2.3: Chemical compositions (%) of API 5A	.44
Table 3.1: The Test pipe sample grades and specifications	.53
Table 4.1.: Chemical composition comparison between pipes inner and outer walls	.73
Table 4.2: Hardness comparison of pipe samples inner, outer and cross sectional	
surfaces	.74
Table 4.3: Corrosion rate measurements of small cut and O-Ring specimens	.80
Table 4.4: The effect of EC on dynamic galvanic cell's potential and current1	103
Table 4.5: The effect of EC on static galvanic cell's potential and current1	103
Table 4.6: Temperature effect on cells current and potentials	105

List of Figures

Figure 2.1: Oil well down-hole strings	7
Figure 2.2: Oil well drilling string assembly, after [27]	
Figure 2.3: Oil well casing strings	
Figure 2.4 OCTG components, after[31]	
Figure 2.5: Coupling connection (top) and Integral connection (bottom) after [31]	
Figure 2.6: OCTG upset types	
Figure 2.7: Seamless OCTG manufacturing method after [35]	
Figure 2.8: Electric resistance welded OCTG manufacturing method after [35]	
Figure 2.9: Oil well down-hole strings after [36]	
Figure 2.10: Geological profile of wells (II173—II146) in Yuejin II Oil Field	
Figure 2.11: Corrosion on a steel surface after [14]	
Figure 2.14: Water cut effect on OCTG corrosion [80]	
Figure 2.15: Rust tubercles formed by sulfate-reducing bacteria [14]	
Figure 2.16: pH effect on corrosion rate [80]	
Figure 2.17: Dissolved gas concentration effect on OCTG corrosion rate[80]	
Figure 2.18: Dissolved partial pressure effect on some steel corrosion	
Figure 2.19: Temperature effect on N-80 casing corrosion	
Figure 2.20: Effect of velocity on corrosion rate, after [42]	
Figure 2.21: Bi-Concentration corrosion between coupling threads gap[14]	
Figure 2.22: Bi-Concentration barnacle corrosion under iron sulfide scale [14]	
Figure 2.23: Bi-Concentration corrosion under iron carbonate scale [55]	
Figure 2.24: Direct-current stray-current interference.	
Figure 2.25: Earth and casing current in N.W Burnett field [73]	
Figure 2.26: Multi-metallic mono-metallic galvanic corrosion diagram	
Figure 2.27: Velocity effect on bi-metallurgic galvanic corrosion	
Figure 2.28: Relation of electrolyte conductivity effect on galvanic current area	
Figure 2.29: Schematic illustration of: tubular manufacturing net residual stresses	
Figure 2.31: Determination of residual stresses in thin walled tube by deflection	
methods	47
Figure 2.32: 3 X-ray pole figures for the four surfaces through the pipe wall	48
Figure 2.33: a. Cooling cross section b. Cooling during longitudinal transportation	
Figure 3.1: Different test specimens	
Figure 3.2: Traditional specimens a) cylinder segment b) cuboid shape	53
Figure 3.3: Adopted specimen by Nippon labs for corrosion study of 4 types of pipe	
Figure 3.4: O-Ring specimens a) inner b) outer c) cross-sectional	55
Figure 3.5: Full-Ring specimens a) Un-coated b) Isolated Ends	56
Figure 3.6: Tubular polishing machine	
Figure 3.7: Scanning Electron Microscope (SEM) (XJP-6A)	58
Figure 3.8: Shimadzu hardness tester HMv-2T	59
Figure 3.9: Thermo Scientific ARL 3460 metal analyzer	
Figure 3.10: Volta lab 10 (Tacussel- Radiometer PGZ 100) potentiostat	60
Figure 3.11: Traditionally small cut specimens installation in corrosion cell kit	
Figure 3.12: O-Ring specimens installation in corrosion cell kit	
Figure 3.13: Tubular Dual Wall Corrosion Cell Kit (TDWCK)	
Figure 3.14: PC interfaced UNI UT61b multi-meter	
Figure 3.15: Polarization of TDWCK cell by Arduino micro controller	

Figure 3.16: CPA 7662 integrated circuit on Arduino module circuit for polarization
applications65
Figure 3.17: Fourth trial developed circuit with Arduino microcontroller for
polarization applications66
Figure 3.18: Full-Ring specimen potentio-scanning set
Figure 3.19: Full Ring corrosion cell kit (FRGCK)
Figure 3.20: Rig system's components
Figure 3.21: Circulation diagram through FRGCK clockwise70
Figure 3.22: Full- Ring galvanic corrosion test run clockwise with 1 ½ inch PVC pipe connection electrolyte bridge70
Figure 3.23: Circulation diagram through FRGCK anticlockwise71
Figure 3.24: Full- Ring galvanic corrosion test run anticlockwise with ½ inch pipe
connection electrolyte bridge
Figure 4.1: Microstructure comparison between sectional, inner and outer wall of G-
105 drill pipe
Figure 4.2: Microstructure comparison between sectional, inner and outer wall of E-75
drill pipe
Figure 4.3: Microstructure comparison between inner(left) and outer wall (right) of L-
80 Tubing for used sample (top) and blank samples (down)
Figure 4.4: Microstructure comparison between sectional, inner and outer wall of L-80
Tubing77
Figure 4.5: Microstructure comparison between sectional, inner and outer wall of x-95
drill pipe78
Figure 4.6: Microstructure comparison between the body and upset end at inner wall of
E-75 drill pipe
Figure 4.7: Microstructure comparison between the body and upset end at inner wall of
E-75 drill pipe
Figure 4.8: Microstructure comparison between the body and upset end at inner wall of
X-95 drill pipe79
Figure 4.9: Residual stress test
Figure 4.10: Polarization curve of small scale and O-Ring samples81
Figure 4.11: Corrosion rate diagram of O-Ring types and traditional specimens81
Figure 4.12: OCP before corrosion tests
Figure 4.13: Manual control over potential polarization curve for L-80 Specimen first
trial
Figure 4.14: Arduino control over potential polarization curve for L-80 Specimen first
trial
Figure 4.15: Arduino control over potential polarization curve for L-80 specimen third
trial selected example 84
Figure 4.16: Free Full-Ring potentio-scanning for L-80 specimen
Figure 4.17: Semi closed Full-Ring potentio-scanning For L-80 specimen
Figure 4.18:Comparison Between Free And Semi Closed Full-Ring Potentioscanning
For L-80 Specimen
Figure 4.21: Free corrosion potential of tubular specimens
Figure 4.23: Galvanic corrosion measurement between exterior and interior walls of L-
80 by Full ring corrosion cell kit (FRCCK)
Figure 4.24 Exp40: Galvanic corrosion measurement between exterior and interior
walls of L-80 grade (Sample A In B Out)91

Figure 4.25: Exp41: (Left cell; B Out, Right cell; A In). Galvanic corrosion
measurement between exterior and interior walls of L-8091
Figure 4.26: Exp48: Galvanic corrosion measurement between exterior and interior
walls of L-80 (Sample A In B Out) (EC 58 mS/cm 3.5% NaCl)92
Figure 4.27: Exp49: Galvanic corrosion measurement between exterior and interior
walls of L-80 (Sample A In B Out) (EC 48 mS/cm 3.3%NaCl)92
Figure 4.28: Exp46: Galvanic corrosion measurement between exterior and interior
walls of L-80 (Sample A In B Out)(EC 0mS)93
Figure 4.29: Exp45: Galvanic corrosion measurement between exterior and interior
walls of L-80 (Sample A In B Out)(EC 34mS)93
Figure 4.30: Exp42: Galvanic corrosion measurement between exterior and interior
walls of L-80 (Sample A In B Out)(EC 90mS)94
Figure 4.31: Exp44: Galvanic corrosion measurement between exterior and interior
walls of L-80 (Sample A In B Out) Galvanic Corrosion (EC 112mS)94
Figure 3.32: Exp43: Galvanic corrosion measurement between exterior and interior
walls of L-80 (Sample A In C In)Galvanic Corrosion (EC 90mS)95
Figure 4.33:Exp72: Galvanic corrosion between outer wall of 262 pipe of L-80 and
outer walls of 263 pipe G-105 (EC 58 mS/cm 3.5% NaCl, T= 25)95
Figure 4.34: Exp74: Galvanic corrosion between outer wall of 262 pipe of L-80 and
outer walls of 263 pipe G-105 (EC 58 mS/cm 3.5% NaCl, T= 25)96
Figure 4.35: Exp75:Static Galvanic corrosion between inner wall of 262 pipe of L-80
and inner wall of 263 pipe G-105 (EC 58 mS/cm 3.5% NaCl, T= 25)96
Figure 4.36: Exp76: Dynamic galvanic corrosion between inner wall of 262 pipe of L-
80 and inner wall of 263 pipe G-105 (EC 58 mS/cm 3.5% NaCl, T= 25)97
Figure 4.37: Exp52 Semi dynamic: galvanic corrosion measurement between exterior -
and interior walls of L-80 (Sample A262 In B262 Out)98
Figure 4.38: Exp47: Galvanic corrosion measurement between exterior and interior
walls (Sample A In B Out) reversed brine bridge position and high flowrate98
Figure 4.39: Exp54: Galvanic corrosion measurement between exterior 304 Rod and
interior walls L-80 (EC 65 mS/cm 3.5%NaCl)99
Figure 4.40: Exp60:: Galvanic corrosion measurement between exterior and interior
wall of L-80 (EC 58 mS/cm 3.5%NaCl, T= 35)99
Figure 4.41: Exp61: Galvanic corrosion measurement between exterior and interior
wall of L-80 (EC 61 mS/cm 3.5% NaCl, T= 42)100
Figure 4.42: Exp73: Galvanic corrosion between inner wall of 262 pipe L-80 and inner
wall of 263 pipe G105 (EC 58 mS/cm 3.5% NaCl, T= 25)100
Fig 4.43: Flow rate effect on Galvanic current between L-80 walls (cell impedance
constant =1600 ohm)102
Figure 4.44: EC conductivity relative to salt concentration
Figure 4.45: NaCl concentration effect on anodic potential of the outer wall of b sample
L-80 at annulus104
Figure 4.46: NaCl concentration effect on cathodic potential of the inner sample of L-
80 grade
Figure 4.47: NaCl concentration effect of galvanic potential difference between L-80
inner and outer walls104
Figure 4.48: Temperature effect on galvanic current and walls potential of L-80 grade
at static condition
Figure 4.49: Temperature effect on galvanic current and walls potential of L-80 grade
at clockwise circulation condition106

Figure 4.50:	: Temperature	effect on galva	nic current and	d walls pote	ential of L-80	grade
at anti	clockwise cir	culation condit	ion			106