

Evaluation of the Protective Effects of Vitamin C and Vitamin E Antioxidants on Type 2 Diabetes in Gaza Strip

A Thesis

Submitted for the Award of the Ph.D. Degree of Science in Zoology (Physiology)

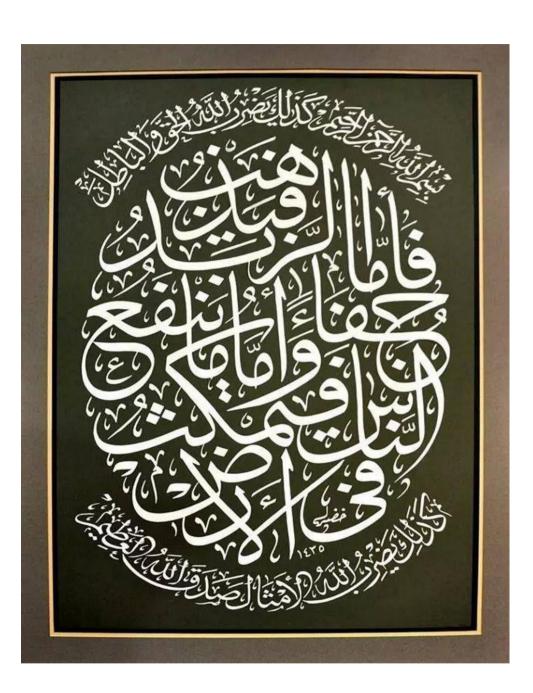
By

Asmaa Sufian Asaad Abu Ghali M.Sc. 2011

Supervisors

Prof. Dr. Ali Mohamed Ali Abd El-Aal

Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University


Prof. Dr. Mahmoud Mohammed Sufyan Sirdah

Professor of Blood Pathophysiology, Biology Department, Science College, Al-Azhar University – Gaza

Dr.Eman Ali Rashad Abd El-Ghffar

Lecturer of Physiology, Zoology Department, Faculty of Science, Ain Shams University

2017

Acknowledgement

I would like to express my gratitude and appreciation to my supervisor: **Prof. Dr. Ali Mohamed Ali Abd El-Aal** Professor of Physiology, Zoology Department, Faculty of Science, Ain Shams University for his supervision, planning the work and the critical reading the manuscript.

Especially thanks for **Prof. Dr. Mahmoud Sirdah** Professor of Blood Pathophysiology, Biology Department, Science College, in Al-Azhar University, Gaza, Palestine. For his help, useful instructions and his helpful in performing the study.

I'm also thankful for **Dr. Eman Ali Rashad Abd El-Ghffar,** Lecturer of Physiology, Zoology Department, Faculty of Science, Ain Shams University. I really cannot find words that satisfy the level of thanks for her diligent cooperation, support and scientific advice.

I also express my thanks for **Dr. Mohmmed Riyad Zoghbour** Assistant Professor of internal medicine and endocrinology, Al Shifa hospital, Gaza, Palestine, for providing laboratory facilities needed to complete this work.

My appreciation and thanks are extended to the staff of Central Blood Bank Society laboratory, and the staff of Medical Relief Society laboratory, Gaza, Palestine, for their help and support. Also, thanks to all members of Zoology Department, Faculty of Science, Ain Shams University.

My special deep and sincere gratitude go to my colleagues for their continuous support, help, and encouragement. Finally, thanks are extended to everyone who has helped me in this work.

Dedication

I would like to dedicate my thesis
To my parents with everlasting love
who taught me reading and writing
since childhood, and without their love,
support through my life, this work
would not have been possible.

To my husband whose endless love, support and encouragement allowed me to achieve my goals.

To my lovely brothers, and children.

To all of them, I dedicate this work.

Asmaa abughali 2017

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	VII
Abstract	X
Introduction	1
Aim of the study	4
Review of Literature	6
Materials and Methods	33
Results	56
Discussion	113
Summary	135
References	140
Arabic summary	

LIST OF ABBREVIATIONS

4-AA	4-Aminoantipyrine
AFR	Ascorbate free radical
AGEs	Advanced glycosylation end products
ALAT	Alanine aminotransferase
ASAT	Aspartate aminotransferase
BMI	Body mass index
CAT	Catalase
CHE	Cholesterol Esterase
СНО	Cholesterol Oxidase
DPP-4	Dipeptidyl peptidase 4
DBP	Daistolic blood pressure
FBG	Fasting blood glucose
G-6-PD	Glucose-6-phosphate dehydrogenase
GR	Glutathione reductase
GSH	Glutathione reduced
GSH-Px	Glutathione peroxidase
GST	Glutathione-S-transferase
H_2O_2	Hydrogen peroxide
Hb	Hemoglobin concentration
HbA1c	Glycated hemoglobin
HCO ₃	Bicarbonate
HCT	Hematocrit
HDL-C	High-density lipoproteins cholesterol
HNO ₂	Nitrous oxide
HOMA- IR	Homeostasis model assessment insulin
	resistance

IDDM	Insulin dependent diabetes mellitus
LDH	lactate dehydrogenase
LDL-C	Low-density lipoprotein cholesterol
LPL	Lipoprotein lipase
MCH	Mean corpuscular hemoglobin
MCHC	Mean corpuscular hemoglobin
	concentration
MCV	Mean corpuscular volume
MDA	Malondialdehyde
MDH	Malate dehydrogenase
MPV	Mean platelet volume
NADP	Nicotinamide adenine dinucleotide
	phosphate
NIDDM	Non-insulin dependent diabetes mellitus
PLT	Platelets
POD	Peroxidase
PPARs	Peroxisome proliferator-activated receptors
PPBG	Postprandial blood glucose
QISCI	Quantitative insulin sensitivity check index
RBCs	Red blood corpuscles
RDW	Red blood cell distribution width
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
SBP	Systolic blood pressure
SOD	Super oxide dismutase
TC	Total cholesterol
TCA	Tricarboxilic acid

TG	Triglycerides
TZDs	Thiazolidinediones
UNRWA	United Nations Relief and Works Agency
VLDL- C	Very low-density lipoprotein cholesterol
WC	Waist circumference
WBC	White blood cell
WHO	World Health Organization
WHR	Waist -hip ratio

LIST OF TABLES

Table	Title	Page
(1)	Demographic and anthropometric	57
	characteristics of healthy subjects group and	
	type 2 diabetic patient groups.	
(2)	Clinical characteristic or blood pressure of	60
	healthy subjects group and type 2 diabetic	
	patient groups.	
(3)	Effect of vitamin C or/ and vitamin E on	63
	serum fasting blood glucose level and	
	glycated hemoglobin in patient with type 2	
	diabetes mellitus.	
(4)	Effect of vitamin C or/ and vitamin E on	66
	serum insulin, insulin resistance and insulin	
	sensitivity in patient with type 2 diabetes	
	mellitus.	
(5)	Effect of vitamin C or/ and vitamin E on	69
	serum ALAT and ASAT activities in patient	
	with type 2 diabetes mellitus.	
(6)	Effect of vitamin C or/ and vitamin E on	٧3
	serum creatinine, urea and uric acid levels in	
	patient with type 2 diabetes mellitus.	
(7)	Effect of vitamin C or/ and vitamin E on	76
	serum cholesterol and triglycerides levels in	

	patient with type 2 diabetes mellitus.	
(8)	Effect of vitamin C or/ and vitamin E on	79
	HDL-C, LDL-C and VLDL-C levels in	
	patient with type 2 diabetes mellitus.	
(9)	Effect of vitamin C or/ and vitamin E on	82
	TC/HDL-C and TG/HDL-C ratio in patient	
	with type 2 diabetes mellitus.	
(10)	Effect of vitamin C or/ and vitamin E on	86
	serum MDA and GSH concentrations in	
	erythrocyte lysate and in whole blood in	
	patient with type 2 diabetes mellitus.	
(11)	Effect of vitamin C or/ and vitamin E on	89
	GR, GST and GSH-Px activities in patient	
	with type 2 diabetes mellitus.	
(12)	Effect of vitamin C or/ and vitamin E on	92
	G6PD activity in patient with type 2	
	diabetes mellitus.	
(13)	Effect of vitamin C or/ and vitamin E on	95
	WBC and LYM in patient with type 2	
	diabetes mellitus.	
(14)	Effect of vitamin C or/ and vitamin E on	98
	RBC and Hb in patient with type 2 diabetes	
	mellitus.	
(15)	Effect of vitamin C or/ and vitamin E on	١٠1
	HCT, MCV, MCH and MCHC in patient	

	with type 2 diabetes mellitus.	
	with type 2 diabetes memtas.	
(16)	Effect of vitamin C or/ and vitamin E on	1.4
	RDW, PLT and MPV in patient with type 2	
	diabetes mellitus.	
(17)	Correlation studies between FBG versus	١07
	HbA1c and INSR, HbA1c versus GSH-Px	
	and G6PD in healthy individuals, patient	
	with type 2 diabetes mellitus groups before	
	and after 90 days of treatment.	
(18)	Correlation studies between GST versus	111
	MDA, RBCs versus G6PD, HCT versus GR	
	and MDA in healthy individuals, patient	
	with type 2 diabetes mellitus groups before	
	and after 90 days of treatment.	

LIST OF FIGURES

Figure	Title	Page
(1)	Age, mean duration, and BMI of healthy subjects	58
	group and type 2 diabetic patient groups.	
(2)	WC and WHR of healthy subjects group and type	61
	2 diabetic patient groups.	
(3)	SBP, and DBP of healthy subjects group and type	٦4
	2 diabetic patient groups.	
(4)	FBG, and HbA1c of healthy subjects group and	٦7
	type 2 diabetic patient groups.	
(5)	Insulin, HOMA-IR and QISCI of healthy subjects	70
	group and type 2 diabetic patient groups.	
(6)	ALT and AST of healthy subjects group and type	٧4
	2 diabetic patient groups.	
(7)	Creatinine, urea and uric acid of healthy subjects	٧7
	group and type 2 diabetic patient groups.	
(8)	Serum Cholesterol and Triglycerides levels of	80
	healthy subjects group and type 2 diabetic patient	
	groups.	
(9)	HDL-C, LDL-C and VLDL-C of healthy subjects	83
	group and type 2 diabetic patient groups.	
(10)	TC/HDL-C ratio and TG/HDL-C ratio of healthy	۸6
	subjects group and type 2 diabetic patient groups.	
(11)	Serum MDA, GSH in erythrocyte lysate and	90
	GSH in whole blood of healthy subjects group	
	and type 2 diabetic patient groups.	
L	ı	

(12)	GR, GST and GSH-Px of healthy subjects group	۹3
	and type 2 diabetic patient groups.	
(13)	G6PD of healthy subjects group and type 2	96
	diabetic patient groups.	
(14)	WBC and LYM of healthy subjects group and	99
	type 2 diabetic patient groups.	
(15)	RBC and Hb of healthy subjects group and type 2	1.2
	diabetic patient groups.	
(16)	HCT, MCV, MCH and MCHC of healthy	1.5
	subjects group and type 2 diabetic patient groups.	
(17)	RDW, PLT and MPV of healthy subjects group	105
	and type 2 diabetic patient groups.	
(18)	Linear correlation between FBG versus HbA1c	108
	(A), FBG versus INSR (B), HbA1c versus GSH-	
	Px (C) and HbA1c versus G6PD (D) in patient	
	with type 2 diabetes mellitus groups before of	
	treatment.	
(19)	Linear correlation between FBG versus HbA1c	109
	(A) and FBS versus INSR (B) in diabetic patient	
	group that received placebo after treatment.	
(20)	Linear correlation between GST versus MDA	112
	(A); RBCs versus G6PD (B, HCT versus GR and	
	MDA (C) and HCT versus MDA (D) in diabetic	
	patients group that received placebo and that	
	received vitamin C and vitamin E.	

Abstract

The most important benefits of vitamins C and E are their role as antioxidants and scavengers of particles as reactive oxygen species (ROS) that also sometimes called oxidants. The objectives of the study are to evaluate the antioxidant effect of vitamin C or/and vitamin E supplements in glycemic control and controlling the lipid profile among type 2 diabetic patients treated with metformin in Gaza strip. The study was carried using 40 men type 2 diabetes mellitus patients from the UNRWA health centers in Gaza Strip, Palestine and 10 controls healthy non-diabetic individuals. Type 2 diabetic patients were treated with metformin and divided into four groups; each group (n=10) receiving one of the followings orally placebo; vitamin C; vitamin E; vitamin C plus vitamin E for 90 days. Before and after treatment, blood samples were collected and the results were analyzed A significant decrease in FBG, HbA1c, serum insulin, HOMA-IR, ASAT, TC, TC/HDL-C, TG/HDL-C and GR, in contrast, a significant increase in QISCI, GSH-Px and GSH were seen in the group supplemented with vitamin C or/and vitamin E compared with diabetic patients group that received placebo. Whereas a significant decrease in ALAT was seen in the group supplemented with vitamin C only, as well as a significant decrease in uric acid, TG and VLDL-C was seen in the group supplemented with vitamin C and vitamin C plus vitamin E. However, the group supplemented