

Cleaning Ability and Cyclic Fatigue of ProTaper Next File (X2) Used in Reciprocation Motion

Thesis submitted to
Faculty of Dentistry
Ain Shams University
For Partial fulfillment of requirements for the
Master degree in Endodontics

By Asmaa Mamdouh Abd Elmoniem B.D.S (2009)

Faculty of Dentistry Ain Shams University

Supervisors

Dr. Abeer Abd Elhakim Elgendy

Professor of Endodontics Faculty of Dentistry Ain Shams University

Dr. Maram Obeid

Associate Professor of Endodontics Faculty of Dentistry Ain Shams University

2018

Dedication

I would like to dedicate my Thesis to my family who helped me a lot and without them I couldn't have achieved anything.

I dedicate it also to my husband who stood beside me and haven't saved effort to help me.

Also, to my dear daughter who witnessed all that and didn't complain.

Acknowledgement

I am greatly honored to express my thankful gratitude to Dr.Abeer Abd Elhakim El-gendy, Professor of Endodontics, Faculty of Dentistry, Ain Shams University for her continuous encouragement, guidance, support and help.

I would like to express my thankful gratitude to **Dr. Maram Obeid**, Associate Professor of Endodontics, Faculty of Dentistry,
Ain Shams University for her support and valuable comments throughout this work.

Personal appreciation and thanks to all stuff members of Endodontic Department, my friends and colleagues for their effort and help whenever asked.

List of Contents

st of figures	. vi
st of tables	ix.
troduction	. 1
eview of literature	3
o Cleaning Ability	3
o Cyclic Fatigue	12
o Reciprocation Motion	21
im of the study	26
aterials and methods	27
Cleaning Ability	27
Cyclic Fatigue	33
esults	43
iscussion	59
ammary and Conclusion	67
eferences	70
rabic summary	٠. ١

List of Figures

Figure	Title	Page		
No.	1100			
1	Photograph showing Protaper Next X2	27		
2	Photograph showing Twisted file (25/0.06)	27		
3	Photograph showing longitudinal section of distobuccal root.	30		
4	Measurement of the area covered by amount of remaining debris	32		
7	using the Image J 1.46 software.	32		
5	A 3D representation of the groove with the circular	35		
3	reservoir at its end.	33		
	A schematic representation of the calculated average angle and			
6	radius of curvature employed to draw the final form of the	35		
	groove for PTN X2.			
	A schematic representation of the calculated average angle and			
7	radius of curvature employed to draw the final form of the	35		
	groove for TF (size 25).			
8	A photograph showing Cyclic fatigue testing apparatus	36		
9	Photograph of the complete assembly with the Sirona motor			
9	handpiece stabilized to the second sheet by cable ties.	38		
	Photographs showing Scanning Electron Microscope			
10	and files in horizontal alignment on the platform for longitudinal	41		
	scanning.			
11	Column chart showing percentage of debris in coronal part in	43		
11	different groups.	43		
12	Column chart showing percentage of debris in middle part in	44		
12	different groups.			
13	Column chart showing percentage of debris in apical part in	45		
13	different groups.			
14	Column chart showing percentage of debris in different parts of	46		
17	the root in Protaper Next (X2) in Reciprocation Motion group.	70		

List of figures

Figure No.	Title	Page No.		
15	Column chart showing percentage of debris in different parts of	47		
	the root in Protaper Next (X2) in Rotation Motion group.			
16	Column chart showing percentage of debris in different parts of	48		
	the root in Twisted file (25/0.06) Rotation Motion group.			
17	Column chart showing mean Number of cycles till failure	49		
	(NCF) in different groups			
18	Top view of PTN X2 in Reciprocation motion at 750x	51		
10	magnification showing Rectangular cross section	31		
19	Top view of PTN-X2 in reciprocation motion at high	51		
19	magnification 1500x .	51		
20	Lateral view of Protaper Next X2 in Reciprocation motion at	50		
20	low magnification 150x shows no signs of plastic deformation.	52		
21	Lateral view of Protaper Next X2 at higher magnification 500x	50		
21	showing machining grooves and disruption of cutting edges	ng edges 52		
	Top view of PTN X2 in Rotation motion at 750x magnification			
22	showing Rectangular cross section with microcracks and	53		
	roughness of the surface.			
23	Top view of PTN-X2 at high magnification 1500x.	53		
24	Lateral view of Protaper Next X2 in Rotation motion at low	54		
24	magnification 150x.	34		
25	Lateral view of Protaper Next X2 at higher magnification 500x	5.1		
23	showing machining grooves and disruption of cutting edges	54		
26	Top view of twisted file (size 25) with 950x magnification	55		
20	showing Triangle cross section.			
27	Top view of Twisted file (25/0.06) after at 1500x magnification	55		
28	Lateral view of Twisted File (25/0.06) at low magnification	ation 56		
28	150x.	50		

List of figures

Figure No.	Title		
29	Lateral view of Twisted File (25) at higher magnification 500x showing the twists, disruption of cutting edge.	56	
30	Scatter plot showing correlation between cyclic fatigue resistance and canal cleanliness (percent of debris) overall the root	58	

List of Tables

Table	Title	Page	
No.		No.	
1	Dimension of TF (25/0.06) file and its testing groove	34	
2	Dimension of PTN (X2) file and its testing groove	34	
3	Percentage of debris in coronal part in different groups	43	
3	and significance of the difference (ANOVA) test	43	
4	Percentage of debris in middle part in different groups and	44	
4	significance of the difference (ANOVA) test	44	
5	Percentage of debris in apical part in different groups and	45	
3	significance of the difference (ANOVA) test	43	
	Percentage of debris in different parts of the root in		
6	Protaper Next (X2) in Reciprocation Motion group and	46	
	significance of difference (ANOVA test)		
	Percentage of debris in different parts of the root in		
7	Protaper Next (X2) in Rotation Motion group and	47	
	significance of difference (ANOVA test)		
	Percentage of debris in different parts of the root in		
8	Twisted file (25/0.06) Rotation Motion group and	48	
	significance of difference (ANOVA test)		
0	Number of cycles till failure (NCF) in different groups	49	
9	and significance of the difference (ANOVA) test		
	Correlation between cyclic fatigue resistance and canal		
10	cleanliness (percent of debris) overall the root using	58	
	Pearson's correlation test		

Introduction

The fundamental aim of endodontic treatment is to prevent or cure apical periodontitis where microorganisms invade and colonize the entire pulp space system, and treatment is directed towards the elimination of bacteria and prevention of re-infection. Mechanical preparation and chemical disinfection are commonly considered together and referred to as "Chemomechanical preparation". It is a significant segment in pulp space therapy and is directly related to concomitant disinfection and subsequent obturation.

Nickel titanium (NiTi) instruments are widely attractive among dentists because they enable more predictable preparation for root canals and significantly better treatment outcomes compared with stainless steel instruments. However, the potential for fracture of these instruments is still a main concern associated with their use.

M-Wire alloy which prepared using a thermal process that can substantially increase the flexibility and mechanical strength of NiTi instruments have shown improved cyclic fatigue resistance and mechanical properties compared with those made of conventional superelastic NiTi wires ⁽¹⁾. Recently, ProTaper Next files (PTN) used this technology. PTN files feature an off-centred rectangular cross-section design for greater strength and a