

Synthesis of Energy Harvesting Nanocomposite Materials for Enhancing Solar Cell Efficiencies

A Thesis Submitted by

Hanaa Selim Ali Selim

Master of Science (Chemistry-2013)

A Dissertation Submitted for the Degree of Doctor of Philosophy of Science in Chemistry

To

Department of Chemistry, Faculty of Science, Ain Shams University Cairo, Egypt (2018)

Approval Sheet

Name of candidate: **Hanaa Selim Ali** Degree: Ph.D. Degree in Chemistry

Thesis Title: Synthesis of Energy Harvesting Nanocomposite Materials for Enhancing Solar Cell Efficiencies

This Thesis has been approved by:

- 1- Prof. Dr. Eglal Myriam Raymond Souaya
- 2- Prof. Dr. Sc. Mohamed F. Kotkata
- 3- Prof. Dr. Mona El-Sayed
- 4- Dr. Amr Ahmed Nada

Approval

Chairman of Chemistry Department

Prof. Dr. Ibrahim Badr

I do appreciate

My god for giving me wonder-fully parents who are enlightening and always supporting me in all my Life.

I also thank my brother, sisters and my future husband for listening and for always being there through everything.

First and last thanks to **Allah** who give me the power to go forward in a way illuminated with his merciful guidance.

I would like to express my thanks to **Prof. Dr.**Sc. M. F. Kotkata, Professor of Material Science,
Physics Department and **Prof. Dr. Eglal Myriam**Raymond Souaya, Professor of Inorganic, Faculty
of Science, Ain Shams University, for giving me the
chance to be one of their students and for their
guidance support, and constructive criticism.

I am so grateful to **Prof. Dr. Mona El-sayed** Professor of Petroleum chemistry, Egyptian Petroleum Research Institute and **Dr. Amr Ahmed Nada**, Researcher of Materials Science, for suggesting the subject of this work, their kind Supervision, cooperation.

Special thanks to **Prof. Dr. Magda**Osman, Head of Analysis & Evaluation
Department, **Dr. Amal Hamdy aoud-allah**,
Assoc. Professor of physical chemistry, **Dr Raad Hegazey** and **Dr Omnia El-Shamy** in Egyptian
Petroleum Research Institute and for their kind
cooperation and **Prof. Dr. Mikhael Bechelany**in Institut Européen des Membranes, Université
Montpellier France.

I would also like to thank my Colleagues in the Spectroscopy Laboratory, Analysis & Evaluation Department, Egyptian Petroleum Research Institute and Institut Européen des Membranes, Université Montpellier France for their help.

Contents

	Page
List of Tables	i
List of Figures	ii
List of Abbreviations	vii
Abstract	viii
Aim of work	X
Chapter 1: Introduction and literature survey	
1.1. Solar cell	2
1.2. Types of solar cells	2
1.2.1. Organic Solar Cells	3
1.2.2. Hybrid Solar cells	5
1.2.3. Quantum Dot Solar Cells	7
1.2.4. Dye Sensitized Solar Cells	9
1.3. DSSC structure and working principle	11
1.4. DSSC components	12
1.4.1. Transparent Conductive Oxide (TCO)	12
1.4.2. Semiconductor Oxide Material	12
1.4.3. Dye Sensitizer	14
1.5. Metal Oxides	15
1.5.1. Zinc oxide	16
1.5.2. Nickel oxide	19
1.5.3. Cupper oxide	21
1.5.4. Titanium Dioxide	23
1.6. Improving the efficiency of solar cell via doping ZnO NPs.	26
1.6.1. Doping NiO on ZnO nanoparticles	30
1.6.2. Doping CuO on ZnO nanoparticles	36

_				
Co	n	TO	n	TC
LU	•	ᇆ		LJ

1.6.3. Doping TiO ₂ on ZnO nanoparticles	42
Chapter II: Experimental Work	
2.1. Materials	47
2.2. Preparations	47
2.2.1. Preparation of ZnO nanoparticles	47
2.2.2. Preparation of NiO doped ZnO nanoparticles	48
2.2.3. Preparation of CuO doped ZnO nanocomposites	49
2.2.4. Preparation of TiO ₂ doped ZnO nanoparticles	50
2.2.5. Preparation of nano-composites thin films as photo- Electrodes	51
2.3. Characterization of prepared samples	52
2. 3. 1. High Resolution Transmission electron microscope (HR-TEM)	52
2.3.2. X-Ray diffraction (XRD) analysis	53
2.3.3. Fourier transform infrared spectroscopy (FT-IR)	53
2.3.4. Dispersive Raman spectroscopy	54
2.3.5. Thermal analysis	54
2.3.6. UV/vis Spectrophotometer	54
2.3.7. Photoluminescence (PL)	55
2.3.8. Current-Voltage measurements	55
Chapter III: Results & Discussion	
3.1. Thermal Analysis	57
3.2. Morphology and Structural Characterizations	59
3.2.1. X-Ray Diffraction (XRD) Analysis	59
3.2.2. Transmission Electron Microscope (TEM)	68
3.2.3. Fourier transform infrared spectroscopy	71
3.2.4. Raman spectroscopy	75
3.3. Optical analysis	80
3.3.1. The optical absorbance spectrum	80

	Contents
3.3.4. Photoluminescence spectroscopy	90
3.4. Current-Voltage characteristics	93
Summary and Conclusion	100
References	104
Published Articles from the Present Thesis	123
Arabic Summary	,

List of Tables

Page

Table (1.1)	Some basic properties of wurtzite ZnO.	18
Table (1.2)	The basic properties of the NiO semiconductor material.	21
Table (1.3)	Some basic properties of CuO at RT.	23
Table (2.1)	Samples named of ZN.	49
Table (2.2)	Samples named of ZC.	50
Table (2.3)	Samples named of ZT.	51
Table (3.1)	Average crystal size and band gap of undoped and NiO doped ZnO NPs.	83
Table (3.2)	Average crystal size and band gap of undoped and CuO doped ZnO NPs.	85
<i>Table</i> (3.3)	Average crystal size and band gap of undoped and CuO doped ZnO NPs.	87
Table (3.4)	DSSC PV parameters at different NiO Precursor conc. mol.%.	96
<i>Table (3.5)</i>	DSSC PV parameters at different CuO Precursor conc mol.%.	97
Table (3.6)	DSSC PV parameters at different TiO_2 Precursor conc. mol. %.	98
Table (3.7)	Photovoltaic parameters of the DSSCs from previous and present work.	99

List of figures

Page

Fig. 1.1	Schematic of a planar organic solar cell.	4
Fig. 1.2	Schematic of a hybrid solar cell.	6
Fig. 1.3	Schematics of quantum dot solar cells.	9
Fig. 1.4	Schematic of a dye sensitized solar cell.	10
Fig. 1.5	Principle operation of dye-sensitized solar cells.	11
Fig. 1.6	The hexagonal wurtzite structure model of ZnO.	17
Fig. 1.7	The unit cell of a NiO structures.	20
Fig. 1.8	The unit cell of CuO structures.	22
Fig. 1.9	The crystal structure of different forms of TiO_2 .	25
Fig. 3.1(A)	TGA- DSC Curves of As-product NiO doped ZnO nanocomopsite as recorded at a constant heating rate of 10 °C/min.	58
Fig. 3.1(B)	TGA-DSC Curves of As-product CuO doped ZnO nanocomopsite as recorded at a constant heating rate of 10 °C/min.	59

Fig. 3.2	XRD spectra of NiO (A) and CuO (B) doped ZnO nanoparticles calcinated at different temperature.	62
Fig. 3.3(A)	XRD spectra of ZnO and ZnO with NiO at different molar ratios calcinated at 800 °C.	63
Fig. 3.3 (B)	XRD spectra of CuO doped ZnO nanoparticles at different molar ratios at 800 °C.	64
Fig. 3.3(C)	XRD spectra of TiO_2 doped ZnO nanoparticles at different molar ratios at $450^{\circ}C$.	65
Fig. 3.4(A)	Displacement of the most intense peak of the XRD pattern provoked by the insertion of Ni and Zn in the crystalline lattice.	67
Fig. 3.4(B)	Displacement of the most intense peak of the XRD pattern provoked by the insertion of Cu and Zn in the crystalline lattice.	67
Fig. 3.4(C)	Displacement of the most intense peak of the XRD pattern provoked by the insertion of Ti and Zn in the crystalline lattice.	68
Fig. 3.5(A)	HR-TEM images of undoped and NiO doped ZnO at different molar ratios (a:f) and SAED pattern at ZN1.5 (Photo g).	69

P		
Fig. 3.5(B)	HR-TEM images of undoped and CuO doped ZnO at different molar ratios (a:f) and SAED pattern at ZC1.5 (Photo g).	70
Fig. 3.5(C)	HR-TEM images of undoped and TiO ₂ doped ZnO at different molar ratios (a:f) and SAED pattern at ZT1.0 (Photo g).	71
Fig. 3.6	FT-IR spectra of undoped and NiO doped ZnO NPs for different molar concentration ratios of NiO.	73
Fig. 3.7	FT-IR spectra of undoped and CuO doped ZnO NPs for different molar concentration ratios of CuO.	74
Fig. 3.8	FT-IR spectra of un doped and TiO_2 doped ZnO NPs for different molar concentration ratios of TiO_2 .	75
Fig. 3.9	Raman spectra for the undoped and NiO doped ZnO NPs for different molar concentration.	77
Fig. 3.10	Raman spectra for the undoped and CuO doped ZnO NPs for different molar concentration.	78
Fig. 3.11	Raman spectra for the undoped and TiO_2 doped ZnO NPs for different molar concentration.	79

Fig. 3.12	UV-vis diffuse reflectance spectra of un doped and NiO doped ZnO NPs.	83
Fig. 3.13	Band gap spectra of undoped and NiO-ZnO NPs.	84
Fig. 3.14	UV-vis diffuse reflectance spectra of un doped and CuO doped ZnO NPs.	85
Fig. 3.15	Band gap spectra of undoped and CuO-ZnO NPs.	86
Fig. 3.16	UV-vis diffuse reflectance spectra of un doped and TiO ₂ doped ZnO NPs.	87
Fig. 3.17	Band gap spectra of un doped and TiO ₂ -ZnO NPs.	88
Fig. 3.18	Diagram of the energy band structures of NiO, CuO and TiO_2 with ZnO.	89
Fig. 3.19	Photoluminescence spectrum of NiO doped ZnO NPs, the inset shows the undoped and the optimum dopant content ZN1.5	92
Fig. 3.20	Photoluminescence spectrum of CuO doped ZnO NPs, the inset shows the undoped and the optimum dopant content ZC1.5.	92

Fig. 3.21	Photoluminescence spectrum of TiO_2 doped ZnO NPs, the inset shows the undoped and the optimum dopant content $ZT1.0$	93
Fig. 3.22	I-V characteristics of ZnO and NiO-ZnO based DSSC (a) and variation of η with NiO concentration mol. % (b).	96
Fig. 3.23	I-V characteristics of ZnO and CuO-ZnO based DSSC (a) and variation of η with CuO concentration mol. % (b).	97
Fig. 3.24	I-V characteristics of ZnO and TiO_2 -ZnO based DSSC (a) and variation of η with TiO_2 concentration mol. % (b).	98