

Biochemical and molecular characterization of some cyclodextrin glycosyl transferase enzyme producing bacteria and actinomycetes

Thesis

Submitted for the PhD Degree in Microbiology

BY Samar Zaim Rashid Al-Sharawi

(M.Sc. Microbiology, 2010)

Supervisors

Dr. Nagwa Ahmed Abdallah

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain shams University.

Dr. Sahar Tolba Mohamed

Assist. Professor of Microbiolgy, Microbiology Department, Faculty of Science, Ain shams University

Dr. Einas H. El-Shatoury

Assist. Professor of Microbiolgy Microbiology Department, Faculty of Science, Ain shams University.

Dr. Ahmed Ibrahim El-diwany

Professor of Microbiology, Chemistry of Natural and Microbial Products Department, National Research Center.

Dr. David Wood

Professor of Microbiology, Chemical and Biomolecular Engineering Department, Ohio State University

> Department of Microbiology Faculty of Science Ain Shams University (2018)

Approval Sheet

Title of Thesis: Biochemical and molecular characterization of some cyclodextrin glycosyl-transferase enzyme producing bacteria and actinomycetes

Degree: Ph.D. in Microbiology

Name of Student: Samar Zaim Rashid Al-Sharawi

Supervisors: Approval

Dr. Nagwa Ahmed Abdallah

Professor of Microbiology, Faculty of science,

Ain shams University.

Dr. Einas Hamed El-Shatoury

Assistant Professor of Microbiology,

Faculty of Science, Ain Shams University

Dr. Sahar Tolba Mohamed

Assistant Professor of Microbiology,

Faculty of Science, Ain Shams University.

Dr. Ahmed Ibrahim El-Diwany

Professor of Microbiology, Chemistry of Natural and

Microbial Products department, National Research Center.

Dr. David West Wood

Professor of Microbiology,

Chemical and Biomolecular Engineering department,

Ohio State University.

Committee:

Dr. Azza Abd El-Aziz Mehanna

Prof. of Microbiology, Botany department, Faculty of Science, Zagazig University.

Dr. Samira Rizk Mansour

Prof. of Microbiology, Botany department, Suez Canal University.

Dr. Nagwa Ahmed Abdallah

Professor of Microbiology, Faculty of science,

Ain shams University.

Dr. Ahmed Ibrahim El-Diwany

Professor of Microbiology, Chemistry of Natural and Microbial Products department, National Research Center

Date of examination 21/6 / 2018

Acknowledgment

Thanks God to whom I attribute all success in my life.

I would like to express my gratefulness & appreciation to **Prof. Dr. Nagwa Abdalla**, Professor of Microbiology, Faculty of Science, Ain Shams University for her continuous supervision, guidance in isolation and optimization parts and in writing thesis.

I would like to deeply thank **Dr. Einas H. El-Shatoury** Assistant Professor of Microbiology, Faculty of Science, Ain Shams University for suggesting the point, for supervision through the work specially in the fermentation and characterization parts, her support and guidance writing this thesis.

I would like to thank **Dr. Sahar Tolba Mohamed**, Assistant Professor of Microbiology, Faculty of Science, Ain Shams University for supervision through the work, her support, guidance and for indispensable guidance in writing the molecular studies part in this thesis.

I am also greatly indebted and deeply thankful to **Prof. Dr. David Wood**, Professor of Microbiology, Chemical and Biomolecular Engineering department, Ohio State University for helping in putting the work protocol, help in the Molecular and enzyme purification parts, everlasting cooperation, endless support, supervision through the work, which profoundly followed them. I'm grateful for being my advisor.

I am also thankful to **Prof. Dr. Ahmed Ibrahim El-Diwany**, Professor of Natural and Microbial products, National Research Centre for his guidance and support.

I want to thank my husband **Dr. Tarek E. Mazeed Hassanin** for his help in the bioreactor batches and AKTA in his Unit in National Research Center.

This project was supported by the **Egyptian government** through the **Egyptian cultural and Educational Bureau**, USA and the **Department of Chemical and Biomolecular Engineering at the Ohio State University, USA**.

I am very grateful to my parents, for their unlimited and generous and everlasting support and to my sister and brothers for their constant encouragement and help.

Finally, I would like to thank all my friends and colleagues in Microbiology department, faculty of Science, Ain Shams University specially Dr. Noha Mohamed, Dr. Hebat Allah Ibrahim and Dr. Dina Hatem and my colleagues in Dr. Wood's group Chemical and Biomolecular Engineering department, Ohio State University for their support and cooperation including Dr. Richard Lease, Dr. Iraj Ghazi, Dr. Steven Shi, Dr. Tzu-Chaing Han, Dr. Meriam Shakalli Tang, Dr. Michael Coolbaugh, Dr. Jeevan Baretto, Dr. Daniel Knight, Dr. Elif Miskioglu, Dr. Merideth Cooper, Dr. Samuel Stimple, Dr. Ashwin Lahiry, Yamin Fan and Joe Taris.

Table of Contents

Pag	ţе
List of Tables	i
List of Figures ii	ii
List of Abbreviationsv	⁄i
1. Abstract	1
2. Introduction	3
2.1. Aim of work	1
3. Literature Review	5
3.1. Starch	5
3.2. Starch-Degrading Enzymes	5
3.3. Cyclodextrin glucosyltransferase (CGTase)	6
3.4. Cyclodextrins	8
3.5. CGTase production	9
3.6. Applications of CGTase in biotechnology1	2
3.6.1. Pharmaceutical	4
3.6.2. Environmental application1	7
3.6.3. Food Industry	3
3.6.4. Cosmetic	0

3.6.5. Textile and packing industry	21
3.7. CGTase gene sequence	22
4. Materials and Methods	29
4.1. Materials	29
4.1.1. Media	29
4.1.2. Buffers and solutions	35
4.1.3. Primers	38
4.1.4. Instruments	40
4.1.5. Chemicals.	41
4.2. Methods	42
4.2.1. Collection of samples	42
4.2.2. Isolation of alkaliphilic and thermophilic CGTase	
producing bacteria and actinomycetes	42
4.2.3. Identification of the selected isolates	44
4.2.4. Molecular studies on CGTase gene	49
4.2.5. Enzyme production	50
4.2.6. Enzyme assay	53
4.2.7. Protein determination	56
4.2.8. Scaling-up CGTase production in 5 l bioreactor	57
4.2.9. Cyclodextrin glycosyltransferase purification	58
4.2.10. Characterization of the purified CGTase	60
vi	

4.2.11. Analysis of the end products of starch degradation using
HPLC64
5. Results66
5.1. Isolation and screening for CGTase-producing bacteria and
actinomycetes66
5.2. Identification of selected isolates
a- Identification by microscopic examination and biochemical
tests71
b-Identification by 16S rDNA
5.3. Molecular studies on CGTase genes94
5.4. Optimization of CGTase production by the selected strains
102
5.4.1. Effect of different carbon sources
5.4.2. Effect of different carbon source concentrations102
5.4.3. Effect of different nitrogen sources
5.4.4. Effect of different concentrations of best nitrogen
source
5.4.5. Effect of different NaCl concentrations
5.4.6. Effect of different Na ₂ CO ₃ concentrations
5.4.7. Effect of different incubation temperature
5.4.8 Effect of different incubation period 112

5.4.9. Effect of different agitation speed
5.5. CGTase scale-up production117
5.6. CGTase purification by ammonium sulfate precipitation and
DEAE-cellulose ion exchange chromatography column134
5.7. Biochemical studies on purified CGTase
5.8. Determination of molecular weight
5.8.1. Effect of temperature on the enzyme activity and
stability138
5.8.2. Effect of pH on the enzyme activity and
stability144
5.8.3. Effect of different metal ions and some additives.151
1- Effect of (1mM) metals on CGTase activity151
2- Effect of (10 mM) metals on CGTase activity155
3- Effect of (1mM) additives on CGTase activity158
4- Effect of (10mM) additives on CGTase activity160
5.8.4. Kinetic studies of purified CGTase162
5.8.5. HPLC analysis of starch hydrolysis products166
6. Discussion168
7. English summary
8. References188
3 الملخص العربي .9
10. المستخلص العربي

List of Tables

Table (I)	Sequence of conserved regions present in GH13	24
	enzymes	
Table (1):	Primers used in this study and their	38
	sequences	
Table (2):	Spectrophotometric CGTase activity for tested	96
	isolates	
Table (3):	Biochemical tests of isolated actinobacteria and	72
· /	bacteria	
	0.000	
Table (4).	Effect of different combon source on CCToss	103
Table (4):	Effect of different carbon source on CGTase	105
	activity	
Table (5):	Effect of different concentrations of carbon	104
	source on CGTase activity	
Table (6):	Effect of different nitrogen source on CGTase	106
· /	activity	
Table (7):	Effect of different yeast extract and peptone	108
Tuble (1).	(1:1) concentrations on CGTase activity	100
Table (0).		110
Table (8):	Effect of different concentrations of NaCl on	110
T.11 (0)	CGTase activity	
Table (9):	Effect of different concentrations of NaCO ₃ on	111
	CGTase activity	
Table (10):	Effect of different incubation temperature on	113
	CGTase activity	
Table (11):	Effect of incubation period on CGTase activity	115
_ ()		110
Table (12):	Effect of different agitation speed on CGTase	116
	activity	
Table (12).	Monitoring the peremeters during uncentralled	118
Table (13):	Monitoring the parameters during uncontrolled	110
	batch-fermentation process of AB2 CGTase at	
	37°C and 180 rpm	

Table (14):	Monitoring the parameters during uncontrolled	124
	batch-fermentation process of TA1 CGTase at	
	55°C and 180 rpm	
Table (15):	Monitoring the parameters during uncontrolled	129
	batch-fermentation process of TA4 at 55°C and	
	180 rpm	
Table (16):	AB2, TB1, TA1 and TA4 purification steps	135
	summary	
Table (17):	Effect of Temperature on CGTase activity	139
Table (18):	AB2, TB1, TA1 and TA4 CGTase thermal stability	141
Table (19):	Effect of pH on CGTase activity	145
Table (20):	pH stability of purified AB2, TB1, TA1 and TA4 CGTase	147
Table (21):	Effect of metals addition of (1mM) on CGTase activity	153
Table (22):	Effect of metals addition of (10mM) on CGTase activity	156
Table (23):	Effect of additives addition of (1mM) on CGTase activity	159
Table (24):	Effect of additives addition of (10mM) on CGTase activity	161
Table (25):	Kinetic characterization of purified CGTase	163

List of Figures

Fig. (I):	Chemical structure of the three main types of	9
	cyclodextrins	
Fig. (II):	Genomic organization of CGTase and maltose ABC	25
	transporter genes of Haloferax mediterranei.	
Fig. (III):	showing AKTA instrument for enzyme purification	60
	using DEAE-cellulose	
Fig. (1):	Standard curve of β-cyclodextrin	55
Fig. (2):	Standard curve of protein	57
Fig. (3):	Starch hydrolysis test results showing clear zone	67
	around growth indicating positive starch hydrolysis	
	of a) AB2 isolate, b) TB1 isolate, c) TA1 isolate, d)	
	TA4 isolate.	
Fig. (4):	Screening of β -CGTase production from AB2	68
	isolate using direct plate assay method.	
Fig. (5):	Screening of β-CGTase activity using	68
	spectrophotometry assay method for isolates.	
Fig. (6):	Gram stain of alkaliphilic bacteria AB2 isolate under	73
	light microscope.	
Fig. (7):	Gram stain of thermophilic bacteria TB1 isolate	73
	under light microscope.	
Fig. (8):	Microscopic examination of thermoactinobacteria	74
	TA1 isolate a) under light microscope showing	
	dense spores on aerial mycelium; b) Spore stain	
	showing single endospore on aerial mycelium; c)	
	Transmission electron microscope showing	
	endospores on aerial mycelium; d) Transmission	
	electron microscope showing endospore shape.	
Fig. (9):	Microscopic examination of thermoactinobacteria	75
	TA4 isolate a) under light microscope showing	
	spores on aerial mycelium; b) Spore stain showing	
	endospores on aerial mycelium; c) Transmission	
	electron microscope showing endospores on aerial	

	mycelium; d) Transmission electron microscope	
	showing endospore shape.	
Fig. (10):	PCR product for 16S rDNA amplification for	78
	isolates AB2, TB1, TA1, TA4 showing single band	
	of 1500 bp. Lane 1 is DNA ladder. Lane 2: AB2 PCR	
	product. Lane 3: TB1 PCR product. Lane 4: TA1	
	PCR product. Lane 5: TA4 PCR product.	
Fig. (11):	Neighbor-joining phylogenetic tree isolate AB2 &	79
	TB1. The scale bar represents the 1% nucleotide	
	substitutions. Numbers on the nodes indicate the	
	bootstrap percentage value calculated from 100	
	trees.	
Fig. (12):	Alignment of 16S rDNA nucleotide sequence of	80
	AB2	
Fig. (13):	Alignment of 16S rDNA nucleotide sequence of	83
	TB1	
Fig. (14):	Neighbour-joining phylogenetic tree isolate TA1 &	86
	TA4. The scale bar represents the 10% nucleotide	
	substitutions. Numbers on the nodes indicate the	
	bootstrap percentage value calculated from 100	
	trees.	
Fig. (15):	Alignment of 16S rDNA nucleotide sequence of	87
	TA1	
Fig. (16):	Alignment of 16S rDNA nucleotide sequence of	90
	TA4	
Fig. (17):	PCR product of key gene cluster of CGTase showing	95
	single band on agarose gel corresponding to a)	
	CGTase (cgt) gene using degenerate primer pair DF1	
	and DR1. Lane 1: PCR product of AB2. Lane 2:	
	DNA ladder. b) Maltose substrate binding protein	
	using primer pair S901 and S211. Lane 1: AB2 PCR	
	product. Lane 2: TB1 PCR product. Lane 3: DNA	
	ladder.	
Fig. (18):	Alignment of protein sequence of AB2 CGTase gene	96
	with related CGT gene sequences.	

Fig. (19):	Alignment of protein sequence of AB2 CGTase	99
8. (->).	gene with related CGT gene sequences.	
Fig. (20):	Phylogenetic tree of AB2 CGTase gene sequence	100
	alignment with related CGTase sequences alignment	
F: (01)	with related CGTase sequences	101
Fig. (21):	Alignment of AB2 and TB1 maltose ABC	101
	transporter substrate-binding protein sequence with related sequences	
Fig. (22):	Effect of different Carbon sources on CGTase	103
	production. Showing little difference between	
	different starch types.	
Fig. (23):	Effect of different concentration of soluble starch	104
	showing that 15 g/l was the best soluble starch	
	concentration	
Fig. (24):	Effect of different Nitrogen sources on CGTase	107
	production showing little difference between organic	
	nitrogen sources. Soluble starch showed the highest	
	enzyme activity while inorganic nitrogen sources	
Eig (25):	showed low CGTase activity.	108
Fig. (25):	Effect of different yeast extract and peptone (1:1) mixture concentration on CGTase production	108
	showing that highest CGTase activity obtained at	
	concentration 20 g/l for AB2, TB1 and TA4 and 15	
	g/l for TA1.	
Fig. (26):	Effect of different concentrations of NaCl on	110
	CGTase activity	
Fig. (27):	Effect of different concentration of Na ₂ CO ₃ on AB2	111
TI (20)	CGTase activity	44.
Fig. (28):	Effect of different incubation temperature on	114
Ei ~ (20)	CGTase activity	115
Fig. (29):	Effect of incubation period on CGTase activity	115
Fig. (30):	Effect of agitation speed on CGTase activity Palation between sampling time and a) both Protein	116
Fig. (31):	Relation between sampling time and a) both Protein and CGTase activity b) both pH and DO c) both	120
	and Cotase activity by both pit and Do c) both	

	CGTase activity and dry weight of cells d) both remaining substrate concentration and CGTse activity e) Specific activity, in uncontrolled batch-fermentor of AB2 at 37°C and 180 rpm	
Fig. (32):	Relation between sampling time and a) both Protein and CGTase activity b) both pH and DO c) both CGTase activity and dry weight of cells d) both remaining substrate concentration and CGTse activity e) Specific activity, in uncontrolled batch-fermentor of TA1 at 55°C and 180 rpm	125
Fig. (33):	Relation between sampling time and a) both Protein and CGTase activity b) both pH and DO c) both CGTase activity and dry weight of cells d) both remaining substrate concentration and CGTse activity e) Specific activity, in uncontrolled batch-fermentor of TA4 at 55°C and 180 rpm	130
Fig. (34):	showing Stir tank bioreactor of a) AB2 isolate, b) TB1 isolate, c) TA1 isolate, d) TA4 isolate	133
Fig. (35):	Purified CGTase molecular weight on SDS protein electrophoresis gel from isolate a) AB2, b) TB1, c) TA1, d) TA4	137
Fig. (36):	Effect of Temperature on CGTase activity of a) AB2, b) TB1, c) TA1, d) TA4.	140
Fig. (37):	Thermal stability a) AB2 CGTase, b) TB1 CGTase, c) TA1 CGTase, d) TA4 CGTase	142
Fig. (38):	Effect of different pH on CGTase activity of a) AB2, b) TB1, c) TA1, d) TA4.	146
Fig. (39):	pH stability of partial purified CGTase of a) AB2, b) TB1, c) TA1, d) TA4.	149
Fig. (40):	Effect of (1mM) metals on CGTase activity. CaCl ₂ , ZnSO ₄ .7H ₂ O supported best enzyme activity while KCl and FeCl ₃ inhibited CGTase activity	154
Fig. (41):	Effect of (10mM) metals on CGTase activity showing that CaCl ₂ and ZnSO ₄ .7H ₂ O increased	157

	enzyme activity while KCl and FeCl ₃ decreased enzyme activity	
Fig. (42):	Effect of (1mM) additives on CGTase activity	159
	showing that α and γ -CD supported CGTase activity	
	while SDS decreased CGTase activity	
Fig. (43):	Effect of (10mM) additives on CGTase	161
	activity showing that α and γ -CD supported	
	CGTase activity while DDT, SDS inhibited the	
	enzyme activity.	
Fig. (44):	Lineweaver-Burk plot of a) AB2 isolate, b) TB1	164
	isolate, c) TA1 isolate, d) TA4 isolate	
Fig. (45):	HPLC analysis of starch hydrolysis by CGTase	167
	enzyme from a) AB2 isolate, b) TB1 isolate, c) TA1	
	isolate, d) TA4 isolate.	