Techniques and uses of femtosecond laser in ophthalmological practice

Essay
Submitted for partial fulfillment of master degree in ophthalmology

Ahmed Samir Abd El-Wakeel Montasser
(M.B.,B,Ch)
Ain Shams University

Supervised by

Prof.Dr.Tarek Mohamed Abdalla

Professor of ophthalmology Faculty of Medicine Ain Shams University

Dr.Bassam Ahmed El-Kady

Lecturer of ophthalmology Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 2010

تقنيات واستخدامات ليزر الفيمتوثانية في مجال طب وجراحة العيون

رسالة توطئة للحصول على درجة الماجستير في طب وجراحة العيون

مقدمة من الطبيب / أحمد سمير عبد الوكيل منتصر بكالوريوس الطب والجراحة كلية الطب — جامعة عين شمس

تحت إشراف

الأستاذ الدكتور / طارق محمد عبد الله

أستاذ طب وجراحة العيون كلية الطب – جامعة عين شمس

الدكتور/بسام أحمد القاضي

مدرس طب وجراحة العيون كلية الطب – جامعة عين شمس كلية الطب جامعة عين شمس 2010

ACKNOWLEDGMENT

Thanks to *God* first and foremost. I feel always indebted to God, the most kind and the most merciful.

I would like to express my great gratitude and respect to *Prof. Dr. Tarek Mohamed Abdalla, Professor of Ophthalmology, Ain Shams University*, and thank him for his outstanding encouragement, advice and his sincere endless support throughout this work.

I feel greatly indebted to *Dr. Bassam Ahmed El-Kady*, *Lecturer of Ophthalmology, Ain Shams University*, for his great care and patience, sincere guidance, tremendous effort and continuous valuable advice throughout this work

Words will not be enough to express my sincere gratitude and appreciation to *my family* who is always behind my success.

CONTENTS

Title	Page No.
List of Abbreviations	II
List of Figures	IV
List of Tables	VII
Introduction and aim of the work	1
Principles of femtosecond laser	5
Femtosecond laser-assisted flap creation for LASIK	14
Femtosecond laser lenticule extraction for correction of myopia	ı35
Channel creation for intrastromal corneal ring segments	38
Femtosecond laser-assisted keratoplasty	53
Penetrating keratoplasty	
Top hat penetrating keratoplasty	56
Lamellar keratoplasty	
Zigzag-shaped keratoplasty	73
Femtosecond laser-assisted corneal biopsy	
Infectious corneal ulcer	
Undiagnosed keratitis	78
Femtosecond laser-assisted corneal tattooing	82
Femtosecond laser in glaucoma	87
Trabeculoplasty	
Glaucoma surgery	91
Femtosecond laser-assisted astigmatic keratotomy	93
Femtosecond laser machines	96
Summary	105
References	107
Arabic Summary	

LIST OF ABBREVIATIONS

AC Anterior chamber

AK Astigmatic keratotomy

ALK Anterior Lamellar keratoplasty

BCVA Best corrected visual acuity

CXL Collagen cross-linking

Diopter

DALK Deep Anterior Lamellar keratoplasty

DLEK Deep lamellar endothelial keratoplasty

DSEK Descemet's stripping endothelial keratoplasty

Er:YAG Erbium- doped yttrium aluminium garnet

FALK Femtosecond laser-assisted lamellar keratoplasty

FDA Food and drug administration

FLK Femtosecond laser keratomileusis

FS Femtosecond

FSL Femtosecond laser

FS LTA Femtosecond laser trabecular ablation

ICRS Intrastromal corneal ring segment

KHz Kilohertz

LASIK Laser assisted in situ keratomileusis

LK Lamellar keratoplasty

mm Millimeter

Nd:YAG Neodynium-doped yttrium aluminium garnet

Nd:YLF Neodynium-doped yttrium lithium fluoride

nm Nanometer

NPDS Non penetrating deep sclerectomy

ns Nanosecond

OBL Opaque bubble layer

PKP Penetrating keratoplasty

PLD Posterior lamellar disc

PLK Posterior Lamellar keratoplasty

PMCD Pellucid marginal corneal degeneration

PRK Photorefrsctive keratectomy

ps Picosecond

SD Standard deviation

SE Spherical equivalent

TH PKP Top hat penetrating keratoplasty

TLSS Transient light sensitivity syndrome

UCVA Uncorrected visual acuity

μJ Micro joules

<u>um</u> Micrometer

UVA Ultra-violet A

LIST OF FIGURES

igure	Title Dece
No.	Title Page
1	Mechanism of microplasma formation8
2	The cavitation bubble8
3	Absorption of the bi-products9
4	Spot spacing and line spacing9
5	Laser pulses are connected together to define a resection plane
6	A resection plane is created
7	Laser pulses stacked on each other to create a vertical cleavage plane
8	Laser pulses stacked on each other to create an angled cleavage plane
9	Creation of a corneal flap with a microkeratome15
10	Flap lifting and adhesion lysis using a spatula18
11	Replacement of a corneal flap19
12	Postoperative BCVA after conventional LASIK, Conventional Intra-LASIK and Custom Comea Intra- LASIK
13	Meniscus versus planar flap23
14	Anterior segment OCT showing Horizontal cross section of the cornea with a highlighted interface24
15	Corneal flaps created with the femtosecond laser26
16	Corneal flap cut with a mechanical microkeratome27
17	OBL (arrow) during LASIK flap creation30
18	Cavitation gas may occasionally enter posterior stroma, subepithelial space, and anterior chamber
19	Cavitation bubbles can be observed in the AC32
20	Principle of FS laser keratomileusis
21	Intraoperative photograph of the lenticule extraction37

'igure	7D'41	D
No.	Title	Page
22	Slit lamp photograph of the same eye 3 months later	37
23	Intacs	39
24	Intacs microscopic picture.	40
25	Diagram showing the design and the diameter of Intrastromal corneal ring segments (Kera ring)	
26	Clinical outcome 1 day postoperative.	46
27	Preoperative and 6 months postoperative cornea topography.	
28	Clinical photograph demonstrating the intracorneal "pocket" created with the FSL.	
29	Clinical photograph demonstrating the infusion of 0.1 ml of 0.1% riboflavin solution within the FSL-created intrastromal pocket.	1
30	Anterior segment OCT image of patient following FSL-assisted penetrating keratoplasty.	
31	Illustration of the FSL-shaped penetrating keratoplasty (PKP) "top-hat" graft configuration	-
32	FSL-contoured top-hat shaped donor graft being placed on a recipient eye	
33	Anterior segment picture of a FSL-enabled keratoplasty 1 week following surgery.	
34	Partial removal of recipient cornea	64
35	Completed partial removal of clouded cornea	64
36	Prepared donor cornea fits perfectly into recipient cornea	64
37	Femtosecond laser–assisted sutureless anterior lamellar keratoplasty	
38	Femtosecond laser anterior lamellar keratoplasty	66
39	Schematic cross sectional view of FSL assisted DLEK	68
40	Slit lamp photography of the eye 1 week after femtosecond DSEK	

igure	Title Pa	200
No.	Tiue I a	age
41	Slit lamp photography of the same eye 2 months after femtosecond DSEK	72
42	Zigzag wound configurations of FS laser-assisted penetrating keratoplasty	73
43	Recipient anterior stroma is peeled away along a dissection plane created using a FS laser lamellar raster pattern	75
44	Cornea after femtosecond laser-assisted biopsy	78
45	Femtosecond laser-assisted diagnostic corneal Biopsy	31
46	Result after manual tattooing	33
47	A schematic diagram illustrating FS corneal tattooing for corneal opacity	86
48	Different Microphotographs stained with H&E showing histology of FS LTA lesions in the human trabecular meshwork	90
49	Two scleral flaps performed on cadaver eye in a non-penetrating glaucoma surgery	92
50	Preoperative and postoperative comeal topographic map of patient underwent FSL-assisted AK.	95
51	IntraLase FSL.	97
52	Femtec FSL	97
53	Femto LDV	98
54	VisuMax	98
55	High & low pulse energy FS lasers	102

LIST OF TABLES

Table No.	Title	Page
1	Differences between Intacs and Kera rings	41
2	Nomogram of segment distribution and thickness according to area of ectasia and spherical equivalent (S.E)	43
3	The differences between available FS laser systems	99

INTRODUCTION

The femtosecond (FS) laser is an infrared laser that works at a wavelength of 1052 nanometer (nm). It emits ultrashort laser pulses with a diameter of 0.001 millimeter (mm) at one-billionth of a second (10^{-15} sec). With the laser, tissue can be cut very precisely and with practically no heat development. (1)

At present, corneal flap creation in Laser assisted in situ keratomileusis (LASIK) surgery is the most common application of the FS laser. The major advantages of FS laser flap creation over the mechanical microkeratome are: 1) increased precision with improved flap safety and thickness predictability; 2) reduced incidence of flap complications, such as buttonholes, epithelial abrasions, short flaps, free caps, blade marks, and irregular cuts; 3) greater surgeon choice of flap diameter, thickness, side cut angle, hinge position, length, spot size, separation, and firing patterns (spiral or raster); and 4) capability of cutting thinner flaps (90 μm or even less). (2)

The FS laser may be used to cut a flap then a lenticule of central corneal stroma using intrastromal photodisruption for correction of myopia (all–FS laser treatment of myopia). (2)

Intracorneal ring segments are implants used for intrastromal insertion in the midperipheral cornea for correction of up to - 3.50 diopters of myopia and for milder cases of

keratoconus without central scarring. The FS laser may be programmed to create arcuate tunnels for implant placement at approximately 70% corneal depth. The tunnel creation with the laser is not only easier and less awkward than with the traditional mechanical spreader method, but also is more precise, more predictable, and less likely to perforate the cornea. (3)

Collagen cross-linking utilizing ultra violet A (UVA) irradiation and riboflavin solution instillation through a femtosecond laser–generated pocket has been applied clinically for the treatment of corneal ectasia and keratoconus. (4)

The FS laser (FSL) is capable of creating straight trephination cuts or complex-pattern trephination cuts for enhanced wound integrity of the graft-host junction. The latter includes the "top-hat" (with a larger diameter cut posteriorly) and the zig-zag patterns. The choice of shapes and diameters in FS laser—assisted keratoplasty is dependent on individualized clinical requirements. (2)

FSL can be precisely used to perform lamellar keratoplasty. Femtosecond laser–assisted lamellar keratoplasty shows promise as a safe and effective surgical choice in the treatment of various corneal pathologies. (5)

FSL is used to perform corneal biopsies in patients with keratitis. The technique allows us to obtain corneal tissue in a quick, accurate and minimally invasive way. (6)

The FSL is used for corneal tattooing. The advantages of the FS laser–assisted corneal tattooing include a customized design, speed, decreased pain, reduced risk of perforation, and good wound healing. This procedure provides improvements over current corneal tattooing techniques. (7)

Various studies have been conducted to study the different uses of FSL in glaucoma, including its use in glaucoma surgeries as well as laser trabeculoplasty. (8)

FSL-assisted astigmatic keratotomy is simple and efficient for managing irregular astigmatism in post-keratoplasty patients and may overcome the limitations of earlier techniques. (9)

There are four FSL systems available in the market: the IntraLase FS (AMO, Irvine, CA, USA), the Femtec (20/10 Perfect Vision AG, Heidelberg, Germany), the Femto LDV (Zeimer Ophthalmic Systems Group, Port, Switzerland), and the VisuMax femtosecond laser system (Carl Zeiss Meditec, Inc., Dublin, CA). (10)

AIM OF THE WORK

The aim is to clarify techniques, different uses of femtosecond laser in ophthalmological practice and differences between different types of femtosecond laser systems.