

SALT AS A SUSTAINABLE BUILDING MATERIAL USING ADDITIVE MANUFACTURING METHODS

By Deena Mohamed El-Mahdy Ahmed Hassanin

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Architectural Engineering

SALT AS A SUSTAINABLE BUILDING MATERIAL USING ADDITIVE MANUFACTURING METHODS

By Deena Mohamed El-Mahdy Ahmed Hassanin

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Architectural Engineering

Under the Supervision of

Prof. Dr. Hisham Sherif Gabr

Assoc. Prof. Dr. Sherif Morad Abdelkader

Abdelmohsen

Professor of Architecture
Department of Architectural Engineering
Faculty of Engineering
Cairo University

Associate Professor of Architecture Department of Architectural Engineering Faculty of Engineering Ain Shams University

SALT AS A SUSTAINABLE BUILDING MATERIAL USING ADDITIVE MANUFACTURING METHODS

By Deena Mohamed El-Mahdy Ahmed Hassanin

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Architectural Engineering

Approved by the
Examining Committee

Prof. Dr. Hisham Sherif Gabr, Thesis Main Advisor
Professor of Architecture, Department of Architectural Engineering, Cairo University.

Assoc. Prof. Dr. Sherif Morad Abdelkader Abdelmohsen, Advisor
Associate Professor, Department of Architectural Engineering, Ain Shams University.

Assoc. Prof. Dr. Mohamed Reda AbdAllah, Internal Examiner
Associate Professor, Department of Architectural Engineering, Cairo University.

Prof. Dr. Mohamed Alaa Mandour, External Examiner
Professor of Urban Design, Department of Architectural Engineering, Helwan University.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018 **Engineer's Name:** Deena Mohamed El-Mahdy Ahmed Hassanin

Date of Birth: 9/8/1988 **Nationality:** Egyptian

E-mail: Dina.dondon.2010@hotmail.com

 Phone:
 01221778211

 Registration Date:
 1/3/2014

 Awarding Date:
/.../2018

Degree: Doctor of Philosophy **Department:** Architectural Engineering

Supervisors:

Prof. Dr. Hisham Sherif Gabr

Assoc. Prof. Dr.Sherif Morad Abdelkader Abdelmohsen

Examiners:

Prof. Dr. Mohamed Alaa Mandour (External examiner)

Assoc. Prof. Dr. Mohamed Reda Abdallah (Internal examiner)

Prof. Dr. Hisham Sherif Gabr (Thesis main supervisor)

Assoc. Prof. Dr.Sherif Morad Abdelkader Abdelmohsen (Member)

Title of Thesis:

SALT AS A SUSTAINABLE BUILDING MATERIAL USING ADDITIVE MANUFACTURING METHODS

Key Words:

Traditional building materials and techniques, Additive Manufacturing and Digital, Fabrication Techniques, Computational Design, Biomimicry and organism behavior, Material behavior.

Summary:

In a context that has been largely shaped by standardization and mass production due to the fast speed of technology in our digital age, the main issue of global concern about the lack of energy and resources. The main aim of the research is to explore salt -sodium chloride- as a local building material differently through new additive manufacturing techniques (such as a 3D printer) in terms of achieving and producing sustainable efficient and low-cost -composite natural unit. The ultimate aim is to reach a fabrication assembly prototype mockup to form a structural panel to test the structure and connections. The AM process would allow the possibility to generate low cost self-built housing solutions on-site, based on the consideration of material through the design process, which is not only connected with the design product but the process itself.

ACKNOWLEDGMENTS

First and foremost, I would like to deeply thank my supervisors **Prof. Hisham Gabr** and **Assoc. Prof. Dr. Sherif Morad.** Without their guidance and assistance for every step through the way, this thesis would not have been accomplished. I would gratefully thank **Prof. Hisham Gabr** for believing in me through choosing such a difficult topic although he mentioned the obstacles and the problems I may go through. His encouragement for me through the post graduate studies started from very early since the masters and continued to the PhD. Not only in an educational level, but in a personal level and his believing that I one day would be a good architect. For **Dr. Sherif Morad,** the supporter and the great teacher. His great way in teaching through computational design process since 2012 means a lot to me through reaching this level. I am lucky to have such respected supervisors who believed in me, supported me and for their continuous encouragement they provided through the research.

A special thanks to **Prof. Nezar AlSayyad**, Chair of the Center for Middle Eastern Studies, UC Berkeley for his priceless feedback on my topic. **Dr. Aref Maksoud**, for the key he gave to me since 2012, through different workshops, his way of teaching and introducing me to the digital and computation world in an easy way. **Prof. Manuel Kretzer** for his help through the research and encouragement through my thesis. My special thanks to **Eng. Eric Gebroes, Yask & Ahmed Hussein** who helped and encouraged me to continue in such a topic directly or indirectly through workshops and their help in technical issues.

I would like to show my gratitude to thank **Prof. Ayman Othman**, the head of the architectural engineering department **at the British University in Egypt**, **Prof. Khaled Dewidar**, **Prof. Ahmed Rashed** & **Dr. Marwa Dabaieh** for their following up and their continuous support, guidance and encouraging me through the whole period of my research with feedback. Getting through this research required more than technical assistance, **Prof. Mostafa El Shazly**, Mechanical department for his help through the material experimentation, **Eng. Tarek**, **Ebtissam & M.Ismaiel** for assisting me during my weekly experimental tests at mechanics Lab.

A Great thanks for **Arch. Ahmed Khalid** for his assistance in different ways in this research; from developing the idea and proposing the machinery of the 3D printing. **Eng. Ahmed Saed** through providing such a great experience in different fields in mechatronics, and 3D printing mechanism. **Arch. Marwa Kamal** for her great support along the thesis and providing priceless help.

Most importantly, none of this would have been accomplished without the support of my family, **my father**, **Arch. M. El-Mahdy** for his evaluation on my proposal, materials, testing and supporting either in this research or through my whole life, **my mother**, **my sister and my brothers** – who supported me in every way with love and warm prayers.

To all I say thank you.

DEENA # Jahrdy - 2018

DEDEICATION

Thanks to Allah who gave me the power to do this research. "God raises those of you who believe and those who were seeking knowledge"

{ يَرْ فَعِ اللَّهُ الَّذِينَ آمَنُوا مِنكُمْ وَ الَّذِينَ أُوتُوا الْعِلْمَ دَرَجَاتٍ } { وَقُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَ الْمُؤْمِنُونَ } { وَقَوْقَ كُلِّ ذِي عِلْمٍ عَلِيمٌ } { وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا قَلِيلاً }

I dedicate this Thesis......

To my wonderful parents who encouraged me to work hard to achieve my dreams, To my professors who taught me to have faith in myself and always to do my best, To my professor and the great mentor, Ahmed Mito, may Allah bless his soul, To my lovely students who helped me in a way or other, To the researchers who may make this a difference in their life.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	***************************************
DEDEICATION	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	viii
LIST OF TABLES	xii
ABSTRACT	xiii
CHAPTER 1: INTRODUCTION	
1.1 Introduction	2
1.2 Research Scope	4
1.3 Research Hypothesis	
1.4 Research Problem	
1.5 Research Questions	6
1.6 Research Outcomes	
1.7 Research Objectives	8
1.8 Research Methodology	
CHAPTER 2: TRADITIONAL MANUFACTURING, LOCAL MATE TRADITIONAL BUILDING TECHNIQUES	ERIALS &
2.1 Sustainability of Local materials and Traditional B. T	14
2.1.1 Strategic plan of Egypt Vision 2030 and 2050.	14
2.1.2 Comparing CO2 emission and life cycle of material and building	16
2.1.3 Three Pillars of Sustainability	18
2.2 Earth Architecture in Desert Climate	21
2.2.1 Worldwide Climate Change and Responsiveness	21
2.2.1 Type of Desert Climate	21
2.2.2 History of Tradition and Earth Architecture	23
2.2.3 Advantages and Disadvantages	28
2.3 Earth Building Materials, Technologies and Techniques	29
2.3.1 Rammed earth	31
2.3.1.1 History	31
2.3.1.2 Material	32
2.3.1.3 Equipment & Technique	32
2.3.1.4 Building maintenance	32
2.3.1.5 Strength and thermal resistance	32
2.3.1.6 Mass production.	32

2.3.2 Mud bricks - Adobe (unbacked)	
2.3.2.1History	33
2.3.1.2 Material	32
2.3.1.3 Equipment & Technique	32
2.3.1.4 Building maintenance	32
2.3.1.5 Strength and thermal resistance	32
2.3.3 Fired bricks	33
2.3.3.2 History	33
2.3.3.3 Material	33
2.3.3.4 Equipment & Technique	33
2.3.3.5 Building maintenance	34
2.3.3.6 Strength	34
2.3.3.7 Mass production.	34
2.3.4 Compressed Soil Earth Block (unbacked)	
2.3.4.1 History	34
2.3.4.2 Material	34
2.3.4.3 Equipment & Technique	34
2.3.4.4 Building maintenance	35
2.3.4.5 Strength	35
2.3.4.6 Mass production	35
2.3.5 Karshif Block	35
2.3.5.1 History	35
2.3.5.2 Material:	36
2.3.5.3 Equipment & Technique	36
2.3.5.5 Strength	
2.3.5.6 Mass production.	
Summary	37
2.4 Salt as a Selected Material	40
2.4.1 Salt Production Worldwide	40
2.4.2 Salt Sources	41
2.4.3 Global Salt Production Uses in the World.	42
2.4.4 Salt Production in Egypt	42
2.4.5 Salt Company Production in Egypt	43
2.4.5.1 El Mex Saline Co.	43
2.4.5.2 El Nasr Saline Co.	43
2.4.5.3 Siwa Salt UK Co.	44
2.4.6 Advantages and disadvantages of salt	
2.5 Summary	45

CHAPTER 3: BIOMIMICRY AND ORGANISM'S BEHAVIOR AS A SUSTAINABLE TOOL IN ARCHITECTURE

3.1 Biomimicry Definition in Nature, Biology and Architecture	48
3.2 Levels of Biomimicry	51
3.2.1 The structure	51
3.2.2 The process	52
3.2.3 The Organism behavior in ecosystem	52
3.3 Biomimicry Strategy of Material Computational	53
3.3.1 Termite Mounds (Heating, Cooling & Ventilation)	55
3.3.1.1 Adaptation.	56
3.3.1.2 Material Behavior and its production process	57
3.3.1.3 Process, Mechanism and System	57
3.3.1.4 Form, structure, morphology, pattern and behavior organism	58
3.3.1.5 Evolution	59
3.3.1.6 Inspiration, sustainable conclusion and application in architecture	59
3.3.2 Wasp Mud Dauber	61
3.3.2.1 Adaptation:	61
3.3.2.2 Material Behavior	61
3.3.2.3 Process, Mechanism & system	62
3.3.2.4 Form, structure, morphology, pattern and behavior organism	63
3.3.2.5 Evolution	63
3.3.2.6 Inspiration, sustainable conclusion and application in architecture	64
3.3.3 Beehive – Honeycomb and the Wax	65
3.3.3.1 Adaptation.	65
3.3.3.2 Material behavior	65
3.3.3.3 Process, Mechanism & system.	65
3.3.3.4 Form, structure, morphology and organism behavior	66
3.3.3.5 Evolution	67
3.3.3.6 Inspiration and architecture application	67
3.4 Summary	68

CHAPTER 4: ADDITIVE MANUFACTURING - NEW BUILDING TECHNIQUE (3D PRINTING AS A DIGITAL FABRICATION)

4.1 3DPrinting as a new technique	72
4.1.1 History and the Idea of 3D Printing.	72
4.1.2 Industrial, mechanical and digital technical ages.	75
4.1.3 Material computational, form and fabrication process	75
4.1.3.1 Watershed Block from Rammed Earth, By David Easton, 2009	77
4.1.3.2 Bio-MASON Bricks	77
4.1.3.3 Bio-Fabrication Bricks	78
4.1.4 Development and effect of 3D printing Worldwide	78
4.2 Sustainability and Economic of 3D printing	80
4.2.1 Additive Manufacturing types and techniques	80
4.2.2 The economic and sustainability of 3D printing in market of architectural construction	85
4.2.3 Advantages and gaps of 3D printing.	89
4.3 Case studies:	90
4.3.1 Phase 1: Traditional Manufacturing Cases.	91
4.3.1.1 Bio-Bricks – Biodegrable Hy-Fi Pavilion.	92
4.3.1.2 Compressed Earth Blocks.	93
4.3.1.3 ISSB Compressed Soil Earth Bricks	94
4.3.1.4 Sand Tectonic Prototype.	95
4.3.2 Phase 2: Additive Manufactured Cases (3D Printing Technique)	96
4.3.2.1 WASP -3D printers for mud - Massimo Moretti - 2015	97
4.3.2.2 Solar Sinter - 3D printing for sand desert, Markus Kayser, 2011	98
4.3.2.3. D-Shape – (Enrico-Dini, 2008)	100
4.3.2.4. Saltygloo pavilion (Emerging objects)	102
4.3.2.5 Salt Seawater Pavilion (Salt pups) – (Eric-Geboers, 2015)	103
4.3.2.6 Stone Spray Robot by Kulik, Shergill and Novikov, 20121034	
4.4 Summary	106
CHAPTER 5: METHODOLOGY, RESULTS AND DISCUSSION	
5.1 Introduction:	110
5.2 Part 1 Material Testing.	112
5.2.1 Phase 1(Preliminary Study)	112
5.2.1.1 Material tested	112
5.2.1.2 Sample Preparation and ratios	114
5.2.1.3 Preparation of tools used and hardened material	114
5.2.1.4 Material behavior test	115
5.2.1.4.1 Dry test	115

5.2.1.4.2 Wet test	116
5.2.2 Phase 2 (Physical behavior and mechanical characterization)	117
5.2.3 Results and Discussion of Phase 1 and 2	119
5.2.3.1 Phase 1: Preliminary results of observation the dry & wet process samp	ples119
5.2.3.1.1 Dry process test:	119
Material Test 1: Starch	119
Material Test 2 - Wax and Arabic gum	119
Material Test 3 – Hot Melt adhesive	120
5.2.3.1.2 Wet process test:	121
Material Test 1: Starch	121
Material Test 2- Wax and Arabic gum	121
Material Test 3 – Hot Melt adhesive	122
5.2.3.2 Phase 2: Physical and mechanical behavior of the 4 samples	123
5.2.3.3 Factors affecting the compressive strength of hardened (4 samples)	126
Effect of salt grain size	126
Effect of compaction	126
Effect of size and shape	127
Effect of heat	129
Effect of water on the cohesion of salt and sand when using starch	129
5.2.3.4 Sustainability analysis & feasibility	129
5.2.3.5 Application	130
5.3 Part 2 Additive Manufacturing of Application Prototype	131
5.3.1 Phase 1: Design the Unit	132
5.3.1.1 Material Behavior (Morphology)	132
5.3.1.2 Form Generation	132
5.3.1.3 3D printing Proposed Machine Manufacturing (Semi-automated)	133
1. The extruder part	133
2. The body of the machine	
3. Mechanism	
5.3.2 Phase 2 Testing Unit (Dissolution & Solidification)	
5.3.3 Phase 3 Prototype Fabrication Assembly -Wall Mockup	
5.3.4 Results and Discussion.	
5.3.4.1 Phase 1: Generated Units (Material Building lifecycle and lifespan)	
Output of Mould and 3D printing Unit	
Output of Mould and 3D printing Offic Machine Mechanism (Factors effect on printed unit)	
a. Mixture of the materials	
b. Shape and size of unit.	137
c. Air gap – mixing	137

d. Solidification and Heat Capacity	137
e. Speed, Velocity & nozzle diameter	138
f. Number of layers, thickness and time between each	
5.3.4.2 Phase 2: Solidification & Dissolution of salt unit (Erosion and Durabi	lity):139
1- Water dissolve Unit.	140
2- Transparent & translucent.	
3- Fire resistance	
5.3.4.2 Phase 3 Panels Assembly (Criteria of comparing Design elements)	141
1. Form generation alternatives of same shape	
2. Connections & Joints.	
3. Wall Structure & Panel Assembly	
5.3.4.3 Sustainability- cost calculation	
1- Economical side (Density, porosity & weight)	
2- Economical side (Energy & cost saving)	
4- Environmental side (U-value).	
5.3.4.4 Architectural Application, Business model and Design Thinking Proc	
5.4 Summary	136
CHAPTER 6: CONCLUSION AND RECOMMENDATION	
6.1 Conclusion.	154
6.2 The Original in my results	156
	156
6.3 Contribution	
6.3 Contribution	
	160
6.4 Obstacles and Limitations	160
6.4 Obstacles and Limitations	160 160
6.4 Obstacles and Limitations 6.5 Lessons Learned and Benefits 6.6 Recommendation for future research	160 160 160
6.4 Obstacles and Limitations 6.5 Lessons Learned and Benefits 6.6 Recommendation for future research 6.6.1 Material and the additive manufacturing machine	160 160 160 161 163
6.4 Obstacles and Limitations 6.5 Lessons Learned and Benefits 6.6 Recommendation for future research 6.6.1 Material and the additive manufacturing machine 6.6.2 Architectural Application Practice, Designers & Researchers	160 160 161 163 166
6.4 Obstacles and Limitations 6.5 Lessons Learned and Benefits 6.6 Recommendation for future research 6.6.1 Material and the additive manufacturing machine 6.6.2 Architectural Application Practice, Designers & Researchers 6.6.3 Labor and social impact / Designing for social sustainability 6.6.4 Economics, Marketing and Developers	160 160 161 163 166
6.4 Obstacles and Limitations 6.5 Lessons Learned and Benefits 6.6 Recommendation for future research 6.6.1 Material and the additive manufacturing machine 6.6.2 Architectural Application Practice, Designers & Researchers 6.6.3 Labor and social impact / Designing for social sustainability.	160160160161163166167

LIST OF FIGURES

Figure 1 Statistics population in Egypt, Central Agency for Public Mobilization, (researcher, 2017)	14
Figure 2 The focused dimensions of the Main 3 pillars to take inconsideration in the thesis,	
(researcher, 2017).	16
Figure 3 CO2 Monthly measurement 2005-2015, NOAA, NASA, (Hanaa Dahy)	
Figure 4 Building industry vs the natural carbon cycle, (left) Unsustainable current condition,	10
(right) sustainable proposal, (Nagy et al., 2015).	17
Figure 5 Heat required to produce building material, (Cardwell, 2016)	
Figure 6 Life cycle of the earth building material, (Schroeder, 2016).	
Figure 7 Sustainability Pillars, (researcher, 2017)	19
Figure 8 Example of eco-efficiency (Nokia 2013) (de Pauw, 2015)	
Figure 9 The eco-efficiency and nature-inspired design strategies	
Figure 10 Building life cycle different strategy, (researcher, 2017)	
Figure 11 Worldwide distribution of hot and temperate deserts, (Encyclopædia Britannica, Inc.	
1997)	
Figure 12 The great Wall of China on left and Shibam city in Yemen on right, (pintrest)	24
Figure 13 Ghadames in Libya left, and right is the red clay wall, Alhambra place in Granada,	
Spain, (pintrest)	24
Figure 14 Classification of earth building, (Schroeder, 2016).	30
Figure 15 The Grain size according to the USCS (The Unified soil classification system)	
Figure 16 Left, Sand/Gravel (Mitchell, 1993), Clay minerals (by Evelyne Delbos, James Huttor	
Institute), Right is Clay mineral, (by University of Jordan)	
Figure 17 The gaps between sand practices are filled with the clay sheets, then water stick them	
together. (Anger & Fontaine, 2009) (Aba-AlKhail, 2017)	
Figure 18 Part of the conservation project that used rammed earth to construct the temple wall,	
(researcher, 2017)	
Figure 19 The production process of compressed blocks and they watered 5 days and kept to dr	
(researcher, 2017)(researcher, 2017)	
Ciescal Clief, 2017)	34
Figure 20 Typical blockyard layout Press 3000, ("Earth Auroville.com compressed stabilised	25
earth block," n.d.)	33
Figure 21 Left is the Old Siwa Shali Citadel and right is modern Adrere Amellal Ecolodge,	25
(researcher, 2017).	
Figure 22 Builders using (Karshif) salt blocks and mud in Siwa, (researcher, 2017)	36
Figure 23 microscopic image of an old mortar shows the binder between mortar (clay and	
aggregate) and salt. (Rovero et al., 2009)	
Figure 24 Process of NaCl dissolution and precipitation	
Figure 25 Density and compressive strength of salt with other materials, (Geboers, 2014)	38
Figure 26 Left is an Arch made of ice and snow, Ice Hotel in Sweden, (ThesDip, 2014)	
Figure 27 Right is Tamera eco-village built with rammed earth in Portugal, (open source ecological)	gy,
2014)	38
Figure 28 Environmental, economic and social Sustainability of the 5 different techniques,	
(researcher, 2017).	40
Fig. 29 The world's leading salt-production regions("MITSIU & Co.," n.d.)	40
Figure 30 World consumption of salt, ("IHS Markit," 2016)	
Figure 31 salt content extracted from different sources, ("Great salt lake," n.d.)	
Figure 32 Different Salt usage, (researcher, 2017)	
Figure 33 Mangarove trees within the harsh saline environment, Wadi el Gimal, Marsa Alam,	12
(researcher, 2017)	43
Figure 34 ("El-Nasr Salines CO.," n.d.)	
Figure 35 Salt blocks and salt from Salt Lake at Siwa, (Researcher, 2017)	
Figure 36 Salt Production of the 3 main companies in Egypt/year, (researcher, 2017)	
Figure 37 The responsive unit façade while heated that occur motion, (Decker Yeadon, 2012)	
Figure 38 Human bone, under scanning electron microscope, Pinterest.com Figure 39 Spiders	
web's temperature control strategy, (Khelil, 2015)	50

Figure 40 from left, (Spider Spinning silk - Glen Peterson, asknature.com)	50
Figure 41 Spinnerets produce liquid fibers (by Jim Stephens, 2015; right by Dennis Kunkel, 2004)	50
Figure 42 The web flexibility due to the junction (YouTube video, BBC Invisible World spide	r
the genius architect, ACMilanillo, 2015) (El-Mahdy, 2017).	51
Figure 43 different types of spiders generate different type of web form and silk, (researcher, 2016)	51
Figure 44 Levels of Biomimicry adopted from Zari (2007).	
Figure 45 The evaluating criteria of the chosen organisms, (researcher, 2017)	53
Figure 46 Insect diversity (dark grey) as a biomimetic ideas for architecture application (Gorb 2011)	
Figure 47 Termite evaluation criteria	
Figure 48 Magnetic termite mound (Amitermes), Litchfield National Park, Northern Territory,	
Australia., (by Ingo Arndt, 2014)	
Figure 49 Mound orientation and sun exposes, (researcher, 2016)	56
Figure 50 Topological pattern of paths. (A) Termite nest. (B) Tomographic section of the same nest	
Figure 51 various structures built by different termite showing section of chambers that connect them	
Figure 52 The air movement through the mound porous inside till it get the hot air outside,	
(Attenborough, 2008)	58
Figure 53 air cycle inside the mound, (researcher, 2017)	
Figure 54 Termite Mound components	
Figure 55 Complex nest architecture, (Desneux, 1952, 1956; Schmidt, 1960)	
Figure 56 Mound Ventilation, Left is capped chimney mounds. Right open-chimney mounds.	
(Turner & Soar, 2008)	59
Figure 57 Cappadocia fairy chimneys & section of the underground cities, ("Turkey Ch.," n.d.)	
Figure 58 Matera Cave in Italy, (shutterstock.com)	
Figure 59 the natural ventilation of the building, (Doan, 2012)	
Figure 60 Wasp evaluation criteria	
Figure 61 Potter wasp -mud and mortar nests (Frisch 1974 Freude 1982) (Pohl & Nachtigal, 2015)	
Figure 62 Queen wasp entering her nest (Kim Taylor, 2017)	
Figure 63 The strength of the mud wasp nest sturdy because of the fibers incorporated in a	-
parallel pattern	62
Figure 64 Ultra-structural details made visible of the surface of an unidentified wasps nest (Janice Carr)	
Figure 65 Nest surface and outer and inner, (Ingo Arndt, 2014)	
Figure 66 Tree wasp queen building nest, (Kim Taylor, 2005)	
Figure 67 the queen wasp while starting the nest construction and material pasting	
Figure 68 Wasp she nest (Fletcher, 2006)	
Figure 69 paper wasp, (Joel Sartore) ("Nationalgeographic," 2017)	
Figure 70 the outer shell of the nest is waterproofed to protect the inner nest from the outer	03
environment, (Pete Oxford).	63
Figure 71 Paper wasp structure tube form, (Robert Thompson, 2012 – 2013 – 2008)	
Figure 71 aper wasp structure tube form, (Robert Thompson, 2012 2013 2000)	
Figure 73 Adobe structures mosque in Mali, & Grain store in Chad (Müller-Karpe, Brandt 198	
(Pohl & Nachtigal, 2015)	
Figure 74 Bees evaluation criteria.	
Figure 75 bee needs to eat 8 pounds of honey to produce 1 pound of wax, (Researcher, 2017)	
Figure 75 wax flakes appear on the abdomens of young bees, (MAY, 2015)	
Figure 77 The differentiation between shapes (researcher, 2017).	
Figure 78 The hexagonal structure of the eye bees on the left (by Rose–Lynn Fisher, 2013),	
Figure 79 Colony can hold 50 times its weight, (researcher, 2017)	
Figure 81 'The evolution of the eggs of bees till they come out, (Varma, 2015)	
Figure 81 The construction of a honeycomb with bees suspended in the air above it forming a	07
	60
parabolic arc. (G.A. de Bazin, 1744)(Ramierz, 2000)	
Figure 83 The model of Sagrada Familia By Gaudi, and the Basilica after construction, pintrest	
Figure 84 The relation between the biomimicry approach I am used with 3D printing (researcher 2017). Figure 85 Additive manufacturing Process(Researcher, 2018)	
Figure 86 3D printing - Growing Market Billion \$. (researcher, 2017)	
CIZULO OU JIJ DEHILIIZ " CHOWINZ MARKELDINION & UESCALUICI. ZUL / J	1.)

Figure 87 Form, function and structure follow Material, (researcher, 2017)	76
Figure 88 Heat required to produce building material, (Cardwell, 2016).	76
Figure 89 Diagram of Embodied Energy Analysis concrete vs bio-stone, (Peter Trimble, 2014)	.77
Figure 90 Watershed Rammed Earth blocks, ("Watershedmaterials.com," 2015)	77
Figure 90 BioMASON Bricks, ("Biomason.com," 2012)	78
Figure 91Process of Bacteria generation then it 3D printed the structure, ("The living newyork," n.d.)	78
Figure 92 Research origin of paper published, (Tay et al., 2017).	79
Figure 93 Comparison on the growth trend of USA and all others countries publications from	
1997 to 2016, (Tay et al., 2017).	
Figure 94 The Changes the 3D printing occurs in the world, (Wijk & Wijk, 2015)	79
Figure 95 Manufacturing 3D printing Type chart, (researcher, 2017).	80
Figure 96 The Binder jetting technique form left to right; SLS, 3DP, SLA and Polyjet process	,
(Wijk & Wijk, 2015)	
Figure 97 The component and the process of Ink Jet Binder jetting technique, (Khoruzhik, 2016)	82
Figure 98 Photopolymirzation technique and using UV-laser light to hardened the polymers –	
resin, (Khoruzhik, 2016)	82
Figure 99 Mesh-mould combines formwork and reinforcement system for concrete (Hack and	
Lauer 2014)	83
Figure 100 Blinder jetting – sand table – TU Delft, (researcher, 2016)	83
Figure 101 Type of Binder Jetting tchnique,(Researcher, 2017)	83
Figure 102 Manufacturing Binder Jetting Type chart, (Researcher, 2017)	83
Figure 103 The FDM, DED Process (Wijk & Wijk, 2015)	
Figure 104 Contour crafting process (Khoshnevis 2004)	84
Figure 105 Contour crafting ceramic and & cement material, (Hwang and Khoshnevis 2005; L	im
et al . 2011)	
Figure 106 Concrete printing at Loughborough University, (Le et al . 2012).	85
Figure 107 Manufacturing Design Method chart, (Researcher, 2017)	85
Figure 108 Sustainable and circular of 3D printing material, (Wijk & Wijk, 2015)	
Figure 109 Economy effects on printing material, (Wijk & Wijk, 2015)	
Figure 110 Circular Economy (Wijk & Wijk, 2015)	
Figure 111 Manufacturing Development of 3D printing; towards sustainability, (Wijk & Wijk, 2015)	
Figure 112The process of manufacturing, (Wijk & Wijk, 2015)	
Figure 113 Case Selection criteria	91
Figure 114 Criteria of Traditional Material Manufacturing Method case study, (by researcher, 2017)	91
Figure 115 Different cases related to traditional manufacturing with new process, (Researcher, 2017).	91
Figure 116 the project comprises a circular tower of organic and reflective bricks that made of	
corn stalk, (by Kris Graves, 2015)	
Figure 117 Bricks consist of crushed corn stalks and hemp, (Nagy et al., 2015)	92
Figure 118 Different form organization for the same unit with the same compressed earth bloc	k
material, (Rabie, n.d.)	
Figure 119 The testing of the Blocks and the form that the machine produce, (researcher, 2017)	94
Figure 120 Constructed wall with bricks after dried, (researcher, 2017).	94
Figure 121 The production of the Blocks through the machine, (researcher, 2017)	94
Figure 122 Crystallization of Sodium Salt used or hardening the sand pattern, (Hussein et al., 2011)	95
Figure 123 The process of the building life-span (distribution, solidification and dissolution),	
(Hussein et al., 2011)	95
Figure 124 The prototype of the surface after solidification, (Hussein, 2015)	95
Figure 125 Criteria of Traditional Material Manufacturing Method case study, (by researcher, 2017)	96
Figure 126 Different cases related to additive manufacturing with new techniques, (researcher, 2017)	96
Figure 127 The nozzle and material mixture used in the 3D printing, (Cooke, 2016)	
Figure 128 The Nozzle of the 3D printing while producing layer by layer the mixture, (Cooke, 2016)	
Figure 129 WASP Material and pattern while printing on site (Wang, n.d.)	
Figure 130 WASP Material height and after it dried (Wang, n.d.)	98
Figure 131 The preparation of the Sintering Laser Machine in the desert, (Khoruzhik, 2016)	