SYNTHESIS OF SOME HETEROCYCLIC COMPOUNDS FOR COMBATING COTTON LEAF WORM" SPODOPTERA LITTORALIS"

Submitted By Mohamed Sobhi Mohamed Ali

B.Sc. of science (Entomology/ Chemistry), Faculty of Science, Ain Shams University, 2010

A thesis submitted in partial fulfillment
Of
The Requirements for the Master's Degree
In
Environmental Sciences

Department of Environmental Basic Sciences
Institute of Environmental Studies and Research
Ain Shams University

SYNTHESIS OF SOME HETEROCYCLIC COMPOUNDS FOR COMBATING COTTON LEAF WORM" SPODOPTERA LITTORALIS"

Submitted By

Mohamed Sobhi Mohamed Ali

B.Sc. of science (Entomology/ Chemistry), Faculty of Science, Ain Shams University, 2010

A thesis submitted in partial fulfillment

Of

The Requirements for the Master's Degree

In

Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1- Prof. Dr. Hassan Mohamed Fawzy Madkour

Prof. of Organic Chemistry Faculty of Science Ain Shams University

2- Dr. Mohamed Emad Azab El-Fakharany

Associate prof. of Heterocyclic Chemistry Faculty of Science Ain Shams University

3- Dr. Ali Fahmy Ali Ahmed

Researcher, Central Agricultural Pesticides Laboratory Agricultural Research Center

Acknowledgement

Acknowledgement

In the name of Allah, the Merciful, the compassionate.

I would like to express my sincere gratitude and great appreciation to Prof. Dr. *Hassan Mohamed Fawzy Madkour*, Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, for suggesting the point from the beginning, continuous work to interpret the obtained data, and for his guidance and valuable observations all over the time during this work.

And I wish to record my deep gratitude to Prof. Dr. *Mohammed Emad Azab El-Fakharany*, Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, he has always been working with me during this research. And I would like to thank him for providing the chemicals and tools needed for this work.

Also I am so grateful to Dr. *Ali Fahmy Ali Ahmed*, associate prof., central agricultural pesticides laboratory, Agricultural Research Center for his appreciated efforts in the experimental part of the insecticidal activity test and demonstrating the results.

Finally, I express my sincere thanks to my parents, however I can't thank them enough for providing the requirements and suitable environment to achieve this work.

Mohammed Sobhi Mohammed Ali khamees

ABSTRACT

The crop plants are the major source of human nutrition, but insects and pests cause huge economic losses every year. The researcher was interested in developing novel insecticidal agents with low toxicity and an acceptable impact on the environment. Thus, 2-amino-5-(substituted)-1,3,4-thiadiazoles (1a, b) were used as versatile materials to synthesize novel compounds through reaction with different electrophiles. The insecticidal activity of the synthesized compounds was tested using 4th instar larvae of *spodoptera littoralis*. Most of the tested compounds showed good to excellent insecticidal activity. Thus, the synthesized compounds could be used in the field of pest control through using them in proper pesticide formulations.

List of Contents

Subject	Page
Introduction & Review of Literature	1
1. Chemistry of 1,3,4- thiadiazole	1
2. Synthesis of 1,3,4-thiadiazole	2
3. Reactivity of 1,3,4-thiadiazole	20
4. Biological Activity of 1,3,4-thiadiazole	40
Materials and Methods	50
1. Synthesis of 1,3,4-thiadiazole derivatives	50
2. Insecticidal Activity	56
Results and Discussion	58
1. Synthesis of 1,3,4-thiadiazole derivatives	58
2. Insecticidal Activity	79
Summary and Conclusion	163
Summary	163
Conclusion	168
References	169
Appendix	190
Arabic Abstract	193

List of Tables

Table	(1):	The	insecticidal	activity	of	newly	synthesized
thiadia	zolopy	rimidin	e derivatives				80
Table (2): The insecticidal activity of newly synthesized thiadiazole							
derivati	ives.						82

List of Plots

plot.	(1):	The	Ldp	line	of	the	synthesized	thiadiazolopyrimidine
deriv	atives							81
plot.	t. (2): the Ldp line of the thiadiazole derivatives.						es. 84	
plot.	(3) tl	he Ldı	p line	of the	thia	adiaz	ole derivative	s. 85

List of Figures

Fig.(1) IR Spectrum of compound (1a)	88
Fig.(2) ¹ H-NMR Spectrum(DMSO) of compound (1a)	89
Fig.(3) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (1a)	90
Fig.(4) Mass Spectrum of compound (1a)	91
Fig.(5) IR Spectrum of compound (1b)	92
Fig.(6) ¹ H-NMR Spectrum(DMSO) of compound (1b)	93
Fig.(7) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (1b)	94
Fig.(8) Mass Spectrum of compound (1b)	95
Fig.(9) IR Spectrum of compound (2)	96
Fig.(10) ¹ H-NMR Spectrum(DMSO) of compound (2)	97
Fig.(11) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (2)	98
Fig.(12) Mass Spectrum of compound (2)	99
Fig.(13) IR Spectrum of compound (4)	100
Fig.(14) ¹ H-NMR Spectrum(DMSO) of compound (4)	101
Fig.(15) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (4)	102
Fig.(16) Mass Spectrum of compound (4)	103
Fig.(17) IR Spectrum of compound (8)	104
Fig.(18) ¹ H-NMR Spectrum(DMSO) of compound (8)	105
Fig.(19) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (8)	106
Fig.(20) Mass Spectrum of compound (8)	107
Fig.(21) IR Spectrum of compound (9)	108
Fig.(22) ¹ H-NMR Spectrum(DMSO) of compound (9)	109
Fig.(23) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (9)	110
Fig.(24) Mass Spectrum of compound (9)	111

Fig.(25) IR Spectrum of compound (10)	112
Fig.(26) ¹ H-NMR Spectrum(DMSO) of compound (10)	113
Fig.(27) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (10)	114
Fig.(28) Mass Spectrum of compound (10)	115
Fig.(29) IR Spectrum of compound (12)	116
Fig.(30) ¹ H-NMR Spectrum(DMSO) of compound (12)	117
Fig.(31) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (12)	118
Fig.(32) Mass Spectrum of compound (12)	119
Fig.(33) IR Spectrum of compound (13)	120
Fig.(34) ¹ H-NMR Spectrum(DMSO) of compound (13)	121
Fig.(35) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (13)	122
Fig.(36) Mass Spectrum of compound (13)	123
Fig.(37) IR Spectrum of compound (15)	124
Fig.(38) ¹ H-NMR Spectrum(DMSO) of compound (15)	125
Fig.(39) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (15)	126
Fig.(40) Mass Spectrum of compound (15)	127
Fig.(41) IR Spectrum of compound (16)	128
Fig.(42) ¹ H-NMR Spectrum(DMSO) of compound (16)	129
Fig.(43) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (16)	130
Fig.(44) Mass Spectrum of compound (16)	131
Fig.(45) IR Spectrum of compound (17)	132
Fig.(46) ¹ H-NMR Spectrum(DMSO) of compound (17)	133
Fig.(47) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (17)	134
Fig.(48) Mass Spectrum of compound (17)	135
Fig.(49) IR Spectrum of compound (18)	136

Fig.(50) ¹ H-NMR Spectrum(DMSO) of compound (18)	137
Fig.(51) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (18)	138
Fig.(52) Mass Spectrum of compound (18)	139
Fig.(53) IR Spectrum of compound (20)	140
Fig.(54) ¹ H-NMR Spectrum(DMSO) of compound (20)	141
Fig.(55) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (20)	142
Fig.(56) Mass Spectrum of compound (20)	143
Fig.(57) IR Spectrum of compound (21)	144
Fig.(58) ¹ H-NMR Spectrum(DMSO) of compound (21)	145
Fig.(59) ¹ H-NMR Spectrum(DMSO+D ₂ O) of compound (21)	146
Fig.(60) Mass Spectrum of compound (21)	147

List of Schemes

Scheme (1): fragmentation pattern of compound 1a	148
Scheme (2): fragmentation pattern of compound 2	149
Scheme (3): fragmentation pattern of compound 4	150
Scheme (4): fragmentation pattern of compound 8	151
Scheme (5): fragmentation pattern of compound 9	152
Scheme (6): fragmentation pattern of compound 10	153
Scheme (7): fragmentation pattern of compound 12	154
Scheme (8): fragmentation pattern of compound 13	155
Scheme (9): fragmentation pattern of compound 15	156, 157
Scheme (10): fragmentation pattern of compound 16	158
Scheme (11): fragmentation pattern of compound 17	159
Scheme (12): fragmentation pattern of compound 18	160
Scheme (13): fragmentation pattern of compound 20	161
Scheme (14): fragmentation pattern of compound 21	162

1. Chemistry of 1,3,4- thiadiazole

The chemistry of heterocyclic compounds has been an interesting field of study for a long time. 1,3,4-Thiadiazoles are important five-membered sulphur and nitrogen-containing heterocycles with a wide range of applications (**Hu**, **Y**. *et al*. **2014**) in medicinal chemistry, material science, and organic synthesis. In particular, these thiadiazole structural motifs bearing an amino functionality in position 2 are valuable building blocks in drug design (**Matysiak**, **J.& Opolski A**, **2006**).

It has been widely reported that compounds bearing thiadiazole rings exhibit anticancer, anti-inflammatory, antibacterial, antifungal, antiviral, anticonvulsant and antiparasitic activities.

Thiadiazole is a constrained pharmacophore with hydrogen binding domain and electron donor system, occurring in nature in four isomeric forms (1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole and 1,3,4-thiadiazole) where 1,3,4-thiadiazole isomer is the most investigated one (**Bhuva**, **H**, *et al.*,2011).

1,2,3-thiadiazole 1,2,4-thiadiazole

1,2,5-thiadiazole 1,3,4-thiadiazole

The 1,3,4- thiadiazole ring is a very weak base due to the inductive effect of the sulfur atom and possesses relatively high aromaticity (**Balaban**, **A. T.**, *et al.*, 2004). It is relatively stable in

aqueous acid solutions but can undergo ring cleavage with aqueous base. Thus, possessing these properties, 1,3,4-thiadiazole derivatives are applied widely in pharmaceutical chemistry.

Thiadiazoles have become very important compounds in agriculture. A large number of 1,3,4-thiadiazoles have been patented in the agricultural field as herbicides and bactericides (**Wei, T-B.** *et al.*,2006). Also, 1,3,4-thiadiazole derivatives have been reported to be insecticidal agents (**Luo, Y-P.**, & Yang, J-F., 2007).

2. Synthesis of 1,3,4-thiadiazole

2.1.From Hydrazonoyl Halide

Treatment of 2-(4-methyl-2-phenylthiazole-5-carbonyl)-*N*-phenylhydrazinecarbothioamide (1) with hydrazonoyl chlorides (**Gomha**, **S. M.; Edrees, M. M.,** *et al.*, **2017**) led to the formation of 1,3,4-thiadiazoles **2**.

Reaction of compound 3 with hydrazonoyl chlorides in dioxane in the presence of triethylamine under reflux afforded thiadiazoles 4 (El-Hag, F. A. A., et al., 2017).

The methylthio derivative 5 underwent nucleophilic substitution when reacted with hydrazonoyl halides in presence of triethylamine at room temperature to afford the thiadiazoles 6 (Badrey, M. G.,et al., 2017).

Ph CN S + R N N Ar HO O N N N Ar EtOH/ Et₃N, RT
$$\frac{Ph}{S}$$
 $\frac{Ph}{S}$ $\frac{Ph}{S}$ $\frac{R}{Ar}$ $\frac{Ph}{S}$ $\frac{R}{Ar}$ $\frac{R}{Ar}$ $\frac{Ph}{S}$ $\frac{R}{Ar}$ $\frac{R}{Ar}$

2.2. From Hydrazine Hydrate

4-bromo-2-methylbenzoic acid was heated in the presence of thionyl chloride in dry toluene giving the corresponding acid chloride, which was treated with hydrazine hydrate in the presence of triethylamine and Lawesson's reagent to afford the thiadiazole 7 in excellent yields (**Wróblowska**, **M.**, *et al.*, **2017**).

2.3. From Acylhydrazines

1,3,4-Thiadiazoles can be prepared *via* sulfuration of the corresponding 1,4 dicarbonyl or acyl precursors using phosphorus sulfide reagent P₂S₅ and / or Lawesson's reagent (**Kuo**, **H-M.**, *et al.*, **2012**).

2.3.1. From Acid Hydrazides

Augustine *et al.* (2009) reported a one-pot synthesis of the 1,3,4-thiadiazoles 8 directly from carboxylic acids with acid hydrazide using propylphosphonic anhydride (T3P) in which it acts as both a coupling and a cyclodehydration reagent.

OH + NH2 H3C CH3

$$R_1$$
 H3C CH3

 R_2 H H3C 1.2 equiv

 R_2 H R_3 R1

 R_4 R2 H R_4 R2 R1

 R_4 R2 H R_5 R1

 R_5 R1

 R_4 R1=4-Me-Ph; 4-CN-Ph

R₂=3-F-Ph; 5-Br-pyridin-3-yl