

Ain Shams University Faculty of Science Physics Department

Preparation and Characterization of Mg-based Alloys for Bone Substitution

Thesis submitted to faculty of Science- Ain Shams University for Degree of M.Sc. in Biophysics

By

Aya Bahaa El-Deen Mahmoud Ahmed

B.Sc. in Biophysics (2011)

Supervised by

Prof. Dr. Mona Salah El-Din Hassan Talaat

Prof. of Biophysics, Physics Department, Faculty of Science, Ain Shams University

Prof. Dr.

Gamila Al-Sayed Ahmed Al-Ganainy

Prof. of Solid State physics, Physics Department, Faculty of Science, Ain Shams University

Prof. Dr. Mohamed Abd El- Wahab Mohamed Walv

Prof. of Casting Technology, Central Metallurgical Research and Development Institute

Department of physics Faculty of Science Ain Shams University (2018)

Acknowledgement

First of all, all glory is to Almighty **Allah**, the most merciful, who gave me the capabilities to complete this research work

I would like to thank my thesis advisor **Prof. Dr. Mona Salah El-Din Hassan**, professor of biophysics, faculty of science, Ainshams university. The door to **Prof. Mona** office was always open whenever I ran into a trouble spot or had a question about my research or writing. She steered me in the right the direction whenever she thought I needed it.

I would like to sincerely thank **Prof. Dr. Gamila Al-Sayed Al-Ganainy,** professor of solid state, faculty of science, Ainshams university. There is an old Chinese saying that 'Teaching a man how to fish is better than giving him a fish". Now, I get the true meaning. **Prof. Gamila** enlightening suggestions and innovative ideas which broadens my views and enhances my practical ability during my research.

I would also like to thank **Prof.Dr. Mohamed Waly**, professor of casting technology, Central Metallurgical Research and Development Institute. I am gratefully indebted to him for his very valuable comments on this thesis.

Also, I would like to thank all professors in our department, who helped and encouraged me, **Prof. Dr. Abd El-Sattar Sallam**, **Prof. Dr. Elsayed Mahmoud Elsayed** and **Prof. Dr. Ibrahim Hassan**.

Special thanks go to **Dr. Hadeer Ibrahim,** lecturer of biophysics, faculty of science, Ainshams university who was involved in the validation survey for this thesis. I really admired her interest in scientific research. Without her passionate participation and input, I could not have been successed.

My appreciation and gratitude go to **Dr. Mohamed Eissa**, a researcher at the metal casting department, Central Metallurgical Research and Development Institute for his helpful discussion and support in the experimental work.

Also, it is a pleasure to thank **Dr. Amina Yousef Omar**, and **Dr. Heba Kahil**, lecturers of biophysics, faculty of science, Ainshams university, for their encouragement, support and advices.

I would like to thank all my colleagues Mohamed Marzouk, Mohamed Adel, Ibrahim Gamal, Asmaa, Nada, and Somia, who directly or indirectly helped me or provided encouragement.

Many thanks to my friends **Hadeel, Manar, Menna, Reem, and Sara.** Their endless support, patience and love, which encourages me to be optimistic and enthusiastic of my study.

Finally, I must express my very profound gratitude to my father eng. Bahaa, my mother Aml, my mother in law Fatma, and to my sisters; Rahaf, Omnia and Rody, for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Very special thanks to my sweet daughter **Mariam**, praying to be safe and blessed.

Dedication

I would like to dedicate this thesis to my lovely husband Waleed

Contents

Subject	Page
List of Figures	I VII VIII X XII
Chapter 1: Introduction and literature review	1
1.1.Introduction	1
1.2.Literature review. 1.2.1. Biodegradable Metals	4 .4 5 8 10
Chapter 2: Theoretical aspects	13
2.1. Introduction to biomaterials	13
2.1.1. The concept of Biomaterials	13
2.1.2. Biocompatibility	13
2.1.3. Classification of Biomaterials	14
2.2. Orthopedic Biomaterials	16
2.2.1. Bone and Bone Fractures	16
2.2.2. Orthopedic Metallic Implant	17
2.3. Advantages of Mg and its alloys as implants	20
2.3.1. Biodegradable.	20
2 3 2 Biocompatible	20

<u>Subject</u>	<u>Page</u>
2.4. Challenges for magnesium alloys as orthopedic implant	t 22
2.4.1. Principles of Metallic Corrosion.	23
2.4.1.1. Electrochemical Corrosion.	23
2.4.2 Corrosion mechanisms of Mg and its alloys	25
2.4.2.1. Influence of impurities on corrosion	27
2.4.2.2. Influence of second phase	28
2.4.3 Techniques to measure corrosion rate	28
2.5. Ways to improve the performance of magnesium implant	s 30
2.5.1 Alloying elements	30
2.5.1.1. Element selection.	32
2.5.2 Surface modification (surface coating)	34
2.5.2.1. Calcium phosphates	34
2.5.2.1.1. Dicalcium phosphate dehydrate	34
2.5.2.1.2.Octacalcium phosphate (OCP)	36
2.5.2.1.3. Tricalcium phosphate (TCP)	36
2.5.2.1.4. Hydroxyapatite (HA)	37
2.5.2.2. Coating techniques	38
2.5.2.2.1. Thermal Spray Process	38
2.5.2.2.2 Plasma Spray method	39
2.5.2.2.3. Biomimetic coating	40
2.5.2.2.4. Sol–gel	41
2.5.2.2.5. Electrodeposition Process	41
2.5.2.2.6. Autocatalytic Technique	42
2.6 Principles of analysis and characterization	43

<u>Subject</u>	Page
2.6.1.1.X- ray diffraction (XRD)	43
2.6.2. Morphological analysis	44
2.6.2.1. Scanning electron microscope (SEM)	44
2.6.3. Chemical analysis.	45
2.6.3.1. X-ray fluorescence (XRF)	45
2.6.3.2. UV- Spectrophotometer	46
2.6.4. Mechanical properties principles	47
2.6.4.1. Stress strain curve.	47
Chapter 3: Material and method	51
3.1. Materials	52
3.1.1. Sample preparation	52
3.1.2. Sample Coating.	52
3.1.3. Preparation of Simulated body fluid (SBF)	54
3.2. Material preparation	55
3.2.1. Melting and Casting alloys	55
3.2.2. Metallographic preparation and etching for characterization	n 59
3.3. Microstructure Characterization	59
3.3.1 Optical Microscope	59
3.3.2. X-ray diffraction (XRD)	59
3.3.3. Scanning electron microscope and EDS	60
3.4.Mechanical tests	60
3.5. Sample Coating	61

<u>Subject</u>	Page
3.5.1.1. Cleaning	61
3.5.1.2. Etching	61
3.5.1.3. Alkali treatment	62
3.5.2. Coating by Autocatalytic bath	62
3.5.3. Characterization of Coating	63
3.6. Corrosion Evaluation by Immersion in (SBF)	64
3.6.1. Preparation of SBF	64
3.6.2 Immersion of sample in SBF	65
3.6.3. Study ionic release after immersion	66
Chapter 4: Results and Discussion	67
4.1. Part 1: As-Cast Alloys	67
4.1.1 Chemical analysis	67
4.1.2. Phases and Microstructure Characterization	67
4.1.3. Mechanical properties characterization	77
4.1.4. Degradation rate analysis of the as-cast alloy sample	es 81
4.1.5. The microstructure of the alloys after immersion	81
4.2. Discussion of part 1	84
4.3. Part 2 : Coated Alloys	90
4.3.1. Characterization of coating	90
4.3.2.Degradation rate analysis of coated alloys	96
4.3.3.The microstructure of coated alloys after immersion	97

Contents

4.4. Discussion of part 2	99
4.5. Part 3: Comparison between the degradation behavior of	un-
coated and coated alloys	102
Conclusion	107
References	109
Appendix	•
Arabic summary	

14

List of Figures

Figure 2.1 An overview of biomaterial classes

Figure 2.2	Biomaterial applications in different human	16
	body organ	
Figure 2.3	Reactions between magnesium alloys and	26
	aqueous environment	
Figure 2.4	Effect of iron content on the corrosion rate of	28
	commercially pure Mg subjected to immersion	
	in 3 % NaCl	
Figure 2.5	Schematic illustration of the procedure to measure the corrosion rate by measuring the volume of hydrogen evolved	30
Figure 2.6	Schematic diagram of thermal spray process	39
Figure 2.7	Schematic diagram of the plasma spray process	40
Figure 2.8	Electrodeposition process using a DC power	42
	source	
Figure 2.9	X- ray tube	44
Figure 2.10	UV- Spectrophotometer	47
Figure 2.11	Tensile speacimen'dog-bone'shape	48
Figure 2.12	Stress –strain curve	49
Figure 2.13	Comparison between stress -strain curve of	50
	ductile and brittle material	
Figure 3.1	Flow sheet of experimental work	51
Figure 3.2	Electric resistance furnace	56

Figure 3.3	The melt protection by tetrafluoroethane (CF ₃ CH ₂ F, HFC–134a) and CO ₂ gas mixture blowing through the stainless steel tube adjusted on the surface of the molten magnesium alloy.	56
Figure 3.4	Remelting of Mg-4 wt.%Zn alloy in a graphite crucible using an electric resistance furnace	58
Figure 3.5	Pouring process of melt under protective gas	58
Figure 3.6	Dimensions of the tensile specimen	60
Figure 3.7	Samples in form of discs	61
Figure 3.8	Sample immersion in acidic bath coating at 60°C under magnetic stirrer	63
Figure 3.9	Schematic diagram shows the preparation of SBF using a magnetic stirrer	65
Figure 4.1	XRD patterns of Mg-4 wt.%Zn alloy (a) without addition and with the addition of 0.5wt% of each (b) Sb, (c) Sn and (d) Bi	68
Figure 4.2	Optical micrographs of Mg-4 wt.%Zn alloy (without addition and with the addition of 0.5wt% of each Sb, Sn and Bi.	70

Figure 4.3	The variation of average grain size of the investigated Mg-4 wt. %Zn alloy with the addition of 0.5wt% of each (Sb, Sn and Bi)	71
Figure 4.4	SEM micrographs with EDS point analysis in as-cast alloys (a) Mg-4wt% Zn and (b) Mg-4wt%Zn-0.5wt% Sb.	73
Continue Figure 4.4	SEM micrographs with EDS point analysis in as-cast alloys (C) Mg-4wt% Zn-wt.%Sn and (d) Mg-4wt%Zn-0.5wt% Bi.	74
Figure 4.5	a) SEM micrograph and EDS elemental mapping of Mg-4wt% Zn (b) Mg and (c) Zn in as-cast alloy Mg-4wt% Zn and (d) SEM micrograph and EDS elemental mapping of Mg-4wt% Zn-0.5wt% Sb. (e) Mg, (f) Zn and (g) Sb in as-cast alloy Mg-4wt% Zn-0.5wt% Sb	75
Continue Figure 4.5	(h) SEM micrograph and EDS elemental mapping of Mg-4wt% Zn -0.5wt%Sn (i) Mg and (j) Zn (k) Sn in as-cast alloy Mg-4wt% Zn -0.5wt%Sn and (l) SEM micrograph and EDS elemental mapping of Mg-4wt% Zn-0.5wt% Bi. (m) Mg, (n) Zn and (o) Bi in as-cast alloy Mg-4wt% Zn-0.5wt% Bi.	76
Figure 4.6	The data curves of tensile strength test of (a) Mg-4Zn, (b) Mg-4Zn-0.5Sb, (c) Mg-4Zn-0.5Sn and (d) Mg-4Zn-0.5-Bi.	78
Figure 4.7	The stress-strain curves of compression strength test of two samples of each alloy; (a) Mg-4Zn, (b) Mg-4Zn-0.5Sb, (c) Mg-4Zn-0.5Sn and (d) Mg-4Zn-0.5-Bi.	79

Figure 4.8	Effect of different alloying elements on the ultimate tensile strength of the investigated Mg-4wt%Zn alloy in compare with pure Mg	80
Figure 4.9	Effect of different alloying elements on compressive strength of the investigated Mg-4wt%Zn alloy in comparison with pure Mg	80
Figure 4.10	The average degradation rate during immersion of un-coated alloys for 14 days	82
Figure 4.11	Figure 4.11: SEM micrographs of un-coated alloys surface after immersion in SBF for 14 days. ((a)-(c)) Mg-4Zn, ((d)-(f)) Mg-4Zn-0.5Sb and ((g)-(i)) Mg-4Zn-0.5Sn.	83
Figure 4.12	Schematic diagram illustrates the general corrosion mechanism of bare alloys during immersion in SBF	87
Figure 4.13	The release of H ₂ gas bubbles after immersion of (un-coated) alloys	87

Figure 4.14	SEM micrographs with EDS showing the coat formed on the surface of Mg-4wt% Zn	91
Figure 4.15	SEM micrographs with EDS showing the coat formed on the surface of Mg-4wt% Zn-0.5wt%Sb	92
Figure 4.16	SEM micrographs with EDS showing the coat formed on the surface of Mg-4wt% Zn-0.5wt%Sn	93
Figure 4.17	SEM micrographs with EDS showing the coat formed on the surface of Mg-4wt% Zn-0.5wt%Bi	94
Figure 4.18	XRD pattern of coated alloys (a) Mg-4Zn, (b) Mg-4Zn-0.5Sb, (c) Mg-4Zn-0.5Bi and (d) Mg-4Zn-0.5Sn	95
Figure 4.19	The average degradation rate during immersion of coated alloys	96
Figure 4.20	SEM micrographs of coated surface of alloys after immersion in SBF for 14 days. ((a)-(c)) coated Mg-4Zn, (d,e) coated Mg-4Zn-0.5Sb, (f,g)coated Mg-4Zn-0.5Sn, and (h,i) coated Mg-4Zn-0.5Bi	98

Figure 4.21	Schematic diagram illustrates the corrosion mechanism of coated alloys during immersion in SBF ,(a and b) Mg-4Zn, Mg-4Zn-0.5Sn and Mg-4Zn-0.5Bi , (c and d) Mg-4Zn-0.5Sb	101
Figure 4.22	SEM images of the un- coated alloys before and after immersion (a,b)Mg-4Zn ,(c,d)Mg-4Zn-0.5Sb and (e,f) Mg-4Zn-0.5Sn	103
Figure4.23	SEM images of the coated alloys before and after immersion (a,b)Mg-4Zn ,(c,d)Mg-4Zn-0.5Sb, (e,f) Mg-4Zn-0.5Sn and (g,h) Mg-4Zn-0.5Bi	103
Figure 4.24	The average degradation rate at first week of immersion of the alloys under investigation in (mm/hr)	105
Figure 4.25	Average concentrations of Ca and P ions in SBF after immersion of alloys in SBF for 14 days.	106