

By

Eng. Mohamed Abdul Wahed Mohamed Khalefa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

By

Eng. Mohamed Abdul Wahed Mohamed Khalefa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

By

Eng. Mohamed Abdul Wahed Mohamed Khalefa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam Eldin Khalil
Mechanical Power Engineering Department
Faculty of Engineering
Cairo University

Dr. Gamal El-HariryMechanical Power Engineering Department
Faculty of Engineering

Cairo University

Dr.Esmael Mohamed Ali Ahmed El-Bialy

Mechanical Power Engineering Department Faculty of Engineering Cairo University

By

Eng. Mohamed Abdul Wahed Mohamed Khalefa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam Eldin KhalilThesis MainMechanical Power Engineering Dept.,AdvisorFaculty of Engineering - Cairo University

Prof. Dr.Samy Morad Morcos

Mechanical Power Engineering Dept.,

Faculty of Engineering - Cairo University

Internal

Examiner

Prof. Dr.Osama Ezzat Abdel-Lattif

Head of Mechanical Power Engineering Dept.,

Shobra Faculty of Engineering - Banha University

External

Examiner

Engineer's Name : Mohamed Abdul Wahed Mohamed Khalefa

Date of Birth : 03/08/1984. Nationality : Egyptian

E-mail : m.khalefa_mail@yahoo.com

Phone No. : 01000092161

Address : 14 El-Zhoor St., 20th St., Faysal

Registration Date : 01/10/2010
Awarding Date : /2015
Degree : Master of Science
Department : Mechanical Engineering

Supervisors:

- Prof. Dr. Essam Eldin Khalil
- Dr. Gamal El-Hariry
- Dr.Esmael Mohamed Ali Ahmed El-Bialy

Examiners:

- Prof. Dr. Essam Eldin Khalil Mechanical Power Engineering Dept., Faculty of Engineering - Cairo University
- Prof. Dr.Samy Morad Morcos

 Mechanical Power Engineering Dept.,

 Faculty of Engineering Cairo University
- Prof. Dr.Osama Ezzat Abdel-Lattif

 Head of Mechanical Power Engineering Dept.,

 Shobra Faculty of Engineering Banha University

Title of Thesis:

Numerical and Experimental Simulation for Air Flow and Temperature Distribution in Islamic Worship Places

Key Words:

Numerical; Experimental; Temperature Distribution Air Velocity; Worship places

Summary:

This research aims to study, analyse and modelling the air flow and temperature distribution inside the air conditioned worship places, specifically those that contain high rise ceiling. The mosque of Faculty of Engineering – Cairo University has been selected in this thesis to obtain experimental and mathematical models of analytical studies because it has one of air conditioning application. In this research the slandered k- model was selected according to the results analysis and comparison between different models.

Acknowledgment

First, I would like to prostrate and praise to THE ALMIGHTY ALLAH whose blessing, guide, and mercy have been behind whatever successfulness may have been achieved in this work. I am eternally grateful that His blessings have come in the form of family and friends who have supported me in all my endeavours.

There are quite a few people, too numerous to mention, who deserve credit for anything I accomplish, both now and in the future. I am very grateful to my advisor, **Prof. Dr. Essam E. Khalil, Dr.Gmal El-Hariry and Dr. Esmael M. El-Bialy** for their technical support and guidance made the thesis possible, their faith and confidence in me as a person is what I have valued and benefited from the most.

I would like to thank my **parents**, my **wife**, and my **sisters**. Their insight and wisdom have been invaluable.

Table of Contents

Ack	knowl	edgment	i
Tab	ole of	Contents	ii
List	t of Fi	gures	V
Lis	t of Ta	ables	.ix
Noi	mencl	ature	X
Gre	eek Le	etters	xii
Abs	stract	X	iii
Chap	ter 1:	Introduction	1
1.1	Ge	neral	1
1.2	The	e Ventilation	1
1.3	Ty	pes of Air Distribution Systems	2
1	.3.1	Displacement ventilation system	2
1	.3.2	Mixing ventilation system	3
1	.3.3	Localized ventilation system	. 4
1.4	Th	e Factors Influencing Airflow Patterns	5
1.5	Hu	man Thermal Comfort	5
1.6	Pre	esent Investigation	. 6
Chap	ter2: 1	Literature Review	. 8
2.1	Int	roduction	. 8
2	.1.1	The characterizations of mosques	8
2.2	Aiı	Distribution Studies and Analyses	. 8
2.3	HV	AC &Ventilation System in Churches	25
Chap	ter 3:	Mathematical Modeling	28
3.1	Int	roduction	28
3.2	Go	verning Equations	30
3	.2.1	General	30
3	.2.2	The fluid element	30
3	23	Substantial derivative	30

	3.2	.4	Mass conservation	33
	3.2	.5	Momentum equation	35
	3.2	.6	Energy equation	37
	3.2	.7	The k- model	43
	3.2	.8	Near-wall treatments for wall-bounded turbulent flows	46
	3.3	Wa	ll Functions	48
	3.3	.1	Standard wall functions	48
	3.3	.2	Non-equilibrium wall functions	53
C	Chapter	r 4: \	Validation	56
	4.1	Intr	oduction	56
	4.2	Exp	perimental Locations	56
	4.3	Ten	nperature Instrument	57
	4.4	Exp	perimental Procedure	57
	4.5	Ten	nperature Measurement	57
	4.6	Ten	nperature Profile:	59
	4.7	Ana	alysis of Presented Results	65
	4.8	Cor	nclusions of Presented Results	72
C	Chapter	r 5: 1	Results and Discussion	74
	5.1	Intr	oduction	74
	5.2	Mo	deling and Boundary Conditions	75
	5.2	.1	Modeling	75
	5.2	.2	Boundary conditions	75
	5.3	Mes	sh Size	. 77
	5.4	Nui	nerical Meshing	. 77
	5.5	Pres	sent Work	78
	5.6	Mo	deled Case Studies	79
	5.6	.1	Case one (actual case)	79
	5.6	.2	Case two	86
	5.6	.3	Case three	91
	5.7	Cor	nparison between Cases	98

Chapte	er 6: Conclusions and Suggested Future Work	100
6.1	Introduction	100
6.2	Conclusions of the Present Work	100
6.3	Recommendations for Future Work	101
Refere	nces	103
Appendix1		105

List of Figures

Fig. 1.1: Principle of displacement ventilation	. 3
Fig. 1.2: Principle of mixing ventilation	.4
Fig. 2.1: Experimental facility and definitions	. 10
Fig. 2.2: Detailed velocity comparison of the third case	. 12
Fig. 2.3: (a) Air distribution and exhaust methods for piston strategy	. 15
Fig. 2.3: (b) Air distribution and exhaust methods for stratification strategy	.16
Fig. 2.3: (c) Air distribution and exhaust methods for zoning strategy	.16
Fig.2.3: (d) Air distribution and exhaust methods for mixing strategy	. 17
Fig. 2.4: Zones of expansion of isothermal jet (log-log plot)	. 17
Fig. 2.5: Configurations of test room	.19
Fig. 2.6: Vertical velocity profile at four different distances from the diffuser	.19
Fig. 2.7: Vertical temperature profile at four different distances from the diffuser	. 20
Fig. 2.8: The virtual room	.20
Fig. 2.9: Temperature field at the manikin center	.21
Fig. 2.10: Attached plane jet mean flow field structure in the corner impingement	
process	21
Fig. 2.11: Experimental setup: (a) the layout of the test chamber with locations of	
air supply device and (b) distribution of measurement points in the test	
chamber	. 22
Fig. 2.12: Measured and calculated maximum jet velocity	23
Fig. 2.13: The maximum turning jet velocity predicted by the modified K_{rm}	. 24
Fig. 3.1: Flow chart CFD analysis process	. 29
Fig. 3.2: The fluid element	.30
Fig. 3.3: Fluid element moving in the fluid flow-illustration for the Substantial	
Derivative	. 33
Fig. 3.4: Mass balance on the fluid element x y z	.34
Fig. 3.5: Illustration of (a) shear stress, (b) normal stress	.35
Fig. 3.6: Stress components on the six faces of the fluid element	.36

Fig. 3.7: Near-Wall Treatments in FLUENT	37
Fig. 4.1: Location of experimental points inside the mosque in (mm)	56
Fig. 4.2: Comparisons between measured and predicted temperature distributions	
for point (a)	59
Fig. 4.3: Comparisons between measured and predicted temperature distributions	
for point (b)	60
Fig. 4.4: Comparisons between measured and predicted temperature distributions	
for point (c)	61
Fig. 4.5: Comparisons between measured and predicted temperature distributions	
for point (d)	62
Fig. 4.6: Comparisons between measured and predicted temperature distributions	
for point (e)	63
Fig. 4.7: Comparisons between measured and predicted temperature distributions	
for point (f)	64
Fig. 4.8: Comparisons between measured and program results without people load	d
for point (a)	66
Fig. 4.9: Comparisons between measured and program results without people load	d
for point (b)	67
Fig. 4.10: Comparisons between measured and program results without people lo	ad
for point (c)	68
Fig. 4.11: Comparisons between measured and program results without people lo	ad
for point (d)	69
Fig. 4.12: Comparisons between measured and program results without people lo	ad
for point (e)	70
Fig. 4.13: Comparisons between measured and program results without people lo	ad
for point (f)	71
Fig. 5.1: 3D Modle for half shape of case study (mosque) – zoom out	76
Fig. 5.2: Geometrical dimension in (mm) of building (mosque)	76
Fig. 5.3: Mesh independence test results	78
Fig. 5.4: Computational nodes after meshing process	78

Fig. 5.5: 3D wire view half of mosque –from out side	79
Fig. 5.6: 3D wire view all building of mosque structure similarity	80
Fig. 5.7: 3D wire view half of mosque –from inside	80
Fig. 5.8: Grid nodes density variation after meshing process	81
Fig. 5.9: Temperature distribution XZ plan at Y= 5.75 m	81
Fig. 5.10: 3D wire view with temperature distribution XZ plan at Y=3 m	82
Fig. 5.11: 3D wire view with temperature distribution plans and $Y = 1 \text{ m } \&$	
Y = 5.75 m	82
Fig. 5.12: 3D wire view with temperature distribution YZ plan and $X = 2 \text{ m}$	83
Fig. 5.13: 3D wire view with temperature distribution YZ plan and $X = 8 \text{ m}$	83
Fig. 5.14: 3D wire view with velocity distribution YZ plan and $X = 2.875$ m	84
Fig. 5.15: 3D view with velocity distribution YZ plan and $X = 2.875 \text{ m}$	84
Fig. 5.16: 3D wire view with velocity distribution YZ plan and $X = 8.625$ m	85
Fig. 5.17: 3D wire view with velocity distribution XZ plans and $Y = 2.875$ m &	
Y = 8.625 m	85
Fig. 5.18: 3D wire view with velocity distribution XZ plans and $X = 2.875$ m,	
X = 4.25 m& X = 8.625	86
Fig. 5.19: (a): Diffusers cut data sheet shows temperature, air velocity and the	
effective area	87
Fig. 5.19: (b): Diffusers cut data sheet shows dimensions and shape of diffuser	
model	87
Fig. 5.20: Contours of velocity magnitude 3D view with distribution label	88
Fig. 5.21: Contours of static temperature at YZ plan 3D view with distribution	
label	. 88
Fig. 5.22: Contours of static temperature at XZ plan 3D view with distribution	
label	. 89
Fig. 5.23: Contours of static temperature 2D side view (1) with distribution label	89
Fig. 5.24: Contours of total temperature 2D side view (2) with distribution label	90
Fig.5.25: Contours of velocity magnitude 2D side view (1) with distribution label	90
Fig. 5.26: Contours of velocity magnitude 2D side view (2) with distribution label.	91

Fig. 5.27: Mosque model without light candle	91
Fig. 5.28: location of supply and exhaust air jet nozzles	92
Fig. 5.29: Jet nozzle cut data sheet	92
Fig. 5.30: Meshing process and number of cells in case (3)	93
Fig. 5.31: Increasing number of cells according to location of jets	93
Fig. 5.32: Velocity distribution XZ plan at Y=5.75	94
Fig. 5.33 Velocity distribution XZ plan at Y=2.875	94
Fig. 5.34: Velocity distribution YZ plan at Y=5.75	95
Fig. 5.35: Velocity distribution YZ plan at Y=2.875	95
Fig. 5.36: 3D wire frame shows velocity distribution XZ plan at the middle	96
Fig. 5.37: 3D wire frame shows temperature distribution XZ plan at the middle	97
Fig. 5.38: 3D wire frame shows temperature distribution YZ plan at the middle	97

List of Tables

Table 2.1: Average standard deviation of the air temperature	. 9
Table 2.2: Isothermal experimental conditions	22
Table 2.3: Value of K_{rm} and the ratio of the jet slot-wall distance to the height of	
the room	25
Table 4.1: Fluent results for actual case	58
Table 4.2: Experimental results at 1:00 pm	58
Table 4.3: Experimental results at 2:30 pm	58
Table 4.4: Experimental results at 4:00 pm	58
Table 4.4: Fluent results for actual case without people load	. 65

Nomenclature

Symbol	Quantity
C	Constant
Cp	Constant pressure specific heat, J/kg.K
d	Distance, m
$D_{im} \\$	Diffusion coefficient for species in mixture, m ² /s
D	Fluid Domain
Е	Total energy of a fluid particle, J
F	External body forces, N
g	Gravitational acceleration, m/s ²
G	Filter function
G_k	Turbulent kinetic energy production, m ² /s ²
h	Enthalpy, kJ/kg
${h_j}^{\rm o}$	Enthalpy of formation of species, J
Н	Height, m
I	Unit tensor Fluctuation intensity
J_{j}	Diffusion flux of species, J
k	Thermal conductivity coefficient, W/m°C
K	Dimensionless group describing the turbulent kinetic energy
L_{s}	Mixing length, m
Le	Lewis number