

DISTRIBUTED GENERATION POWER QUALITY ASSESSMENT USING A UNIFIED POWER QUALITY INDEX

By

Ghada Said Abdelmoteleb Elbasuony

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power & Machines Engineering

DISTRIBUTED GENERATION POWER QUALITY ASSESSMENT USING A UNIFIED POWER QUALITY INDEX

By Ghada Said Abdelmoteleb Elbasuony

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electrical Power & Machines Engineering

Under the Supervision of

Dr. Ahmed Mohamed Ibrahim

Associate Professor of Electrical power and Machine Dept.
Faculty of Engineering,
Cairo University

DISTRIBUTED GENERATION-POWER QUALITY ASSESSMENT USING A UNIFIED POWER QUALITY INDEX

By Ghada Said Abdelmoteleb Elbasuony

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

ir

Electrical Power & Machines Engineering

Approved by the Examining Committee

Associate. Prof. Dr. Ahmed Mohamed Ibrahim, Thesis Main Advisor
Prof. Dr. Essam El Din Abou El Zahab, Internal Examiner

Prof. Dr. Said Abd El- Monem Wahsh, External Examiner

- Electronics Research Institute

Engineer's Name: Ghada said Abdelmotelb Elbasuony

Date of Birth: 12./7./1972 **Nationality:** Egyption

E-mail: ghadaelbasuony@gmail.com

Phone: +201006760876

Address: 22 Mohamed talat St. Agoza-Giza

Registration Date: 1/10 /2012 **Awarding Date:**/2018 **Degree:** Master of Science

Department: Electrical Power & Machines Engineering

Supervisors:

Associate. Prof. Dr. Ahmed Mohamed Ibrahim

Examiners:

Prof. Dr Said Abd El- Monem Wahsh (External examiner)

Electronic research institute

Prof. Dr Essam El Din Abou El Zahab (Internal examiner)

Electrical Power and Machines Department, Cairo University

Associate. Prof. Dr. Ahmed Mohamed Ibrahim (Thesis main advisor)

Electrical Power and Machines Department, Cairo University

Title of Thesis:

DISTRIBUTED GENERATION-POWER QUALITY ASSESSMENT USING A UNIFIED POWER QUALITY INDEX

Key Words:

Unified power quality index; Power Quality; Distributed Generation; Smart Grid; Analytic hierarchy process (AHP).

Summary:

The increasing growth of renewable energy systems changes the behavior of traditional central generation electric power systems, and the transition towards the smart grids should accommodate these changes. There are a variety of distribution generation (DG) systems configurations that can cause severe problems to the security and power quality (PQ) of the systems. Hence, it is important to evaluate and compare the impact of each of them on the system PQ. To date, there is no agreed upon approach to quantify the overall power quality performance of a system in the presence of distributed generation units because of the numerous power quality definitions, perspectives, and phenomena. The main objective of this research is to introduce a new unified power quality index (UPQI) to evaluate, assess and compare the effectiveness of different interface configurations with different sizing and siting of DG systems such as wind, photovoltaic (PV), and fuel cell energy systems under different operating conditions.

Acknowledgments

My sincere appreciation and special thanks are due to Dr. Shady Abd elaleem at the Higher Institute of technology of 15 may. He has been working with me for the last five years; my first steps in the field of research were under his close supervision and technical guidance. He aided me in setting the work plan and the methodology. His contribution was major through all the phases of the research and his support was decisive in the publication of a scientific paper related to research topic. His useful comments and remarks lead me to finalize the thesis. Also, his experience in solving technical problems during the simulation process was of great help to me.

My faithful appreciation and special thanks are due to my supervisor, Assoc.Prof. Dr. Ahmed Mohamed Ibrahim, professor of Electrical Power and Machines Dept. Cairo University, Egypt, for giving me the honor of finishing my study under his supervision. His truthful comments encouragement are faithfully appreciated.

Also I would like to express my sincere thanks to my son Ali and my family, for their patience and continuous encouragement in study. Special thanks to my friends Yasmin Adel and Nashwa Ahmed for their tremendous support.

Last but not least, no words of thanks and feelings are sufficient.

Dedication

I dedicate this work to the memory of my son Mohamed.

Table of Contents

ACKNOWLEDGMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	V
LIST OF FIGURE	VI
NOMENCLATURE	VIII
LIST OF ABBREVIATION	
LIST OF PUBLICATION	
ABSTRACT	XII
CHAPTER 1: INTRODUCTION	1
1.1. DISTRIBUTED GENERATION SYSTEMS	1
1.1.1. Photovoltaic systems	
1.1.1.1. PV array	
1.1.1.2. Inverter	
1.1.2. Fuel cell	
1.1.3. Wind energy conversion system	
1.2. Power quality of power system	
1.2.1. Harmonics	5
1.2.2. Voltage sage	6
1.2.3. Voltage flicker	6
1.2.4. Frequency deviation	
1.2.5. Power factor	6
1.2.6. Single tuned passive filter (STPF)	7
1.3. ANALYTIC HIERARCHY PROCESS	7
1.4. PROBLEM STATEMENT	7
1.5. MOTIVATION OF THIS WORK	7
1.6. OBJECTIVE OF THIS RESEARCH	8
1.7. Organization	8
CHAPTER 2 : REVIEW OF LITERATURES	9
2.1. IMPACT OF DG ON POWER SYSTEM	9
2.2. IMPACT OF DG ON POWER QUALITY	10
2.3. ANALYTIC HIERARCHY PROCESS APPLICATION IN POWER SYSTEM	
2.4. OVERALL POWER QUALITY EVALUATION IN LITERATURE	12
CHAPTER 3: MODELING OF DISTRIBUTED GENERATION SYS	STEMS
UNDER STUDY	15
3.1. DG SYSTEMS UNDER STUDY	15
J.1. DO SISIEMS UNDER SIUDI	13

3.2.	PV AND HYBRID PV -FUEL CELL BATTERY SYSTEMS	18
3.2.1	. PV Simulink model	18
•	3.2.1.1. Mathematical modeling of PV module:	
-	3.2.1.2. Modeling based on surface curve fitting of the actual PV panel data:	
3.2.2		
3.2.3		
3.3.	WIND FARM MODELING	
3.4.	Hybrid AC load	
3.5.	SINGLE-TUNED PASSIVE FILTER (STPF)	
CHAP	ΓER 4 : THE PROPOSED UNIFIED POWER QUALITY INDEX	29
4.1.	FORMULATION OF THE PQ INDICES	30
4.1.1		
4.1.2	· · · · · · · · · · · · · · · · · · ·	
4.1.3	. Power frequency deviation (FD)	32
4.1.4		
4.1.5	, , , , , , , , , , , , , , , , , , , ,	
4.2.	IMPLEMENTATION OF THE IDEAL AHP	34
4.3.	FORMULATION OF THE PROPOSED INDEX	
4.3.1		
4.3.2	· · · · · · · · · · · · · · · · · · ·	
4.3.3		
4.3.4		
4.3.5	1 3	
4.4.	SUMMARY OF THE STUDY CASES	42
	TER 5 : THE UPQI RESULTS UNDER NORMAL OPERATING	40
COND	ITIONS	43
5.1.	HYBRID WIND/PV/FC SYSTEM	43
5.2.	COMBINED WIND/PV SYSTEM	49
5.3.	DISTRIBUTED WIND SYSTEM	55
5.4.	SUMMARY OF THE UPQI RESULTS UNDER NORMAL OPERATION CONDITION	ONS.60
	TER 6 : THE UPQI RESULTS UNDER THREE-PHASE FAULT	
COND	ITION	61
6.1.	Hybrid wind/PV/FC system	
6.2.	COMBINED WIND/PV DG SYSTEM	67
6.3.	WIND DG SYSTEM	72
6.4.	SUMMARY OF THE UPQI RESULTS UNDER THREE PHASE FAULT CONDITION	ı76
CHAP'	TER 7 : CONCLUSIONS AND FUTURE WORK	77
REFEI	RENCES	79

List of Tables

Table 3.1 Parameters of hybrid AC load	25
Table 4.1: Judgment matrices and the resultant weights vectors of the three scena	rios:
Wind bus	37
Table 4.2: Judgment matrices and the resultant weights vectors of the three scena	rios:
PV/FC bus	38
Table 4.3: Judgment matrices and the resultant weights vectors of the three scena	rios:
Grid bus	40
Table 4.4: Judgment matrices and the resultant weights vectors of the three scena	rios:
Load bus	41
Table 4.5: Summery of DG systems Study cases	
Table 5.1: Power quality measures of the hybrid wind/PV/FC system with and was	ithout
compensation	44
Table 5.2: Unified power indices for hybrid wind/PV/FC system	44
Table 5.3: Power quality measures of the combined wind/PV system with and wi	thout
compensation	
Table 5.4: Unified power indices for combined wind/PV system	
Table 5.5: Power quality measures of the distributed wind system with and without	ut
compensation	
Table 5.6: Unified power indices for distributed wind system	
Table 5.7: The UPQI results under normal operation conditions	
Table 6.1: PQ quantities of the hybrid wind/PV/FC DG system with and without	STPF
at three phase fault	
Table 6.2: Unified power indices for hybrid wind/PV/FC DG system	
Table 6.3: PQ quantities of the wind/PV DG system with and without STPF at th	ree
phase fault	
Table 6.4: Unified power indices for the wind/PV DG system	
Table 6.5: PQ quantities of the wind DG system with and without STPF at 3phas	e fault
Table 6.6: Unified power indices for the wind/PV DG system	
Table 6.7: The UPQI results under three phase fault condition	76

List of Figure

Figure 1.1 Grid connected PV system	1
Figure 1.2 PV characteristics at different radiation level	
Figure 1.3 Basic converter configurations	
Figure 1.4 Structure of fuel cell	4
Figure 1.5 Fixed speed wind system	5
Figure 1.6 Types of power quality disturbances	
Figure 2.1: AHL hierarchy model	
Figure 3.1: DG sources-smart grid interface study system	17
Figure 3.2: (a) Single diode model of PV cell. (b) PV array Simulink model	
Figure 3.3: Steps to generate PV model based on real output data	
Figure 3.4: Surface fit of Current–voltage curves at different irradiance value	
Figure 3.5: Lookup table block PV Simulink model	
Figure 3.6: Equivalent circuit of the fuel cell	
Figure 3.7: Simulink model of PV hybrid system	
Figure 3.8: (a) Simulink model of VSI-6 inverter-pulse dynamic, (b) Dynamic error	
driven controller of PV 6 Pulse VSI, (c) Weighted-modified PID (WMPID) controlled	er
Figure 3.9.: (a) Fixed speed wind generation system (b) Wind system Simulink mod	
Figure 3.10: Simulink model of hybrid AC load	
Figure 3.11: Modeling of the STPF: (a) Single-phase equivalent circuit, and (b)	
Impedance-frequency characteristic.	27
Figure 4.1 Procedures for determining the unified power quality index	
Figure 4.2: Harmonic Estimation Simulink model	
Figure 4.3: Voltage sage Simulink model	32
Figure 4.4: Frequency deviation Simulink model	32
Figure 4.5: Flicker meter Simulink model	
Figure 4.6: Flowchart for procedure of implementation of the ideal AHP	
Figure 5.1: Wind speed and solar irradiance variations: (a) Wind speed, and (b) Solar	
irradiance.	
Figure 5.2: Load bus' PQ quantities in wind hybrid PV/FC DG system at normal	
operating condition	45
Figure 5.3: Grid bus' PQ quantities in wind hybrid PV/FC DG system at normal	
operating conditions	46
Figure 5.4: Wind bus PQ quantities in Hybrid wind/PV/FC system at normal operation	ng
condition	_
Figure 5.5: Hybrid PV/FC bus' PQ quantities in wind hybrid PV/FC DG system at	
normal operating conditions	48
Figure 5.6: Wind and solar irradiance variations in wind /PV DG system at normal	
operating conditions	50
Figure 5.7: Load bus' PQ quantities in wind/PV DG system at normal operation	
conditions	51
Figure 5.8: Grid bus' PQ quantities in wind/PV DG system at normal operation	
conditions.	52
Figure 5.9: PV bus' PQ quantities in wind/PV DG system at normal operation	
conditions	53

Figure 5.10: Wind bus' PQ quantities in wind/PV DG system at normal operating
conditions54
Figure 5.11: wind speed variation in wind DG system at normal operating conditions 56
Figure 5.12: Load bus PQ quantities in wind DG system at normal operating condition
57
Figure 5.13: Grid bus PQ quantities in wind DG system at normal operating conditions
58
Figure 5.14: Wind bus PQ quantities in wind DG system at normal operating condition
Figure 6.1: Load bus PQ quantities in hybrid wind/PV/FC system at three phase fault
condition
Figure 6.2: Grid bus PQ quantities in hybrid wind/PV/FC system at three phase fault
condition
Figure 6.3: hybrid PV/FC bus PQ quantities in hybrid wind/PV/FC system at three
1
Figure 6.4: Wind bus PQ quantities in hybrid wind /PV/FC DG system at three phase
fault condition
Figure 6.5: Load bus' PQ quantities in wind/PV DG system at three phase fault
conditions
Figure 6.6: Grid bus' PQ quantities in wind/PV DG system at three phase conditions.69
Figure 6.7: PV bus' PQ quantities in wind/PV DG system at three phase fault
conditions70
Figure 6.8: Wind bus' PQ quantities in wind/PV DG system at three phase fault
conditions71
Figure 6.9 Load bus PQ quantities in wind DG system at three phase fault conditions 73
Figure 6.10 Grid bus PQ quantities in wind DG system at three phase fault conditions 74
Figure 6.11 Wind bus PQ quantities in wind DG system at three phase fault conditions

Nomenclature

CI	Consistency index
CR	Consistency ratio
CSI	Correction factors for change in cell output current
CSV	Correction factors for change in cell output voltage
C_{TI}	Photocurrent temperature coefficient
CTV	Temperature coefficient
e	Electron charge
FDR	Frequency deviation ratio
f_m	The measured frequency at the fundamental harmonic
,	order
f_r	Rated frequency at the fundamental harmonic order
Fp	Measured value of the factor p
Fs	Inverter switching frequency
h	Harmonic order
h_t	Harmonic tuning order
I	Number of the DG systems
<i>IO</i>	Reverse saturation current of diode
<i>Ic</i>	Cell output current
<i>Iphx</i>	Photocurrent at radiation S_x
Iph	Photocurrent
IFL	Instantaneous flicker level
I_h	The <i>h</i> th harmonic line current
J	Number of buses
R_F	Fundamental resistance of the STPF
Rs	Series resistance of cell
SS	Sag score
S_x	Radiation
T_c	Reference cell operating temperature
T_x	Working temperature T_x
THD_I	Current total harmonic distortion
THD_V	Voltage total harmonic distortion
V_c	Cell output voltage
V_{cx}	Cell output voltage at radiation S_x
k	Boltzmann constant
λ max	Maximum eigenvalue of a judgment matrix
n	The judgment matrix dimension
N_f	Number of the selected factors that affect the PQ performance
PF	Power factor
P_{lt}	Long-term flicker severity value
PQI_G	Power quality index at the gr d bus

- PQI_L Power quality index at the load bus PQI_{PV} Power quality index at the PV bus PQI_w Power quality index at the wind bus P_{st} Short-term flicker severity value
- q Quality factorρ Air density
- V_h The hth harmonic load voltage
- V_W Wind speed
- C_P Power coefficient
- w_p Weight of the factor p
- X_C Fundamental capacitive reactance of the STPF
- X_L Fundamental inductive reactance of the STPF
- Z_h The *h*th harmonic impedance of the STPF

List of Abbreviation

AHP Analytic hierarchy process
ANN Artificial neural network
AVR Automatic voltage regulator

BREEAM British Building Research Establishment Environmental Assessment met

D-FACTS Distributed flexible AC transmission systems

DFIG Doubly-fed induction generator
DFIG Doubly-fed induction generator

DG Distributed generation

EGPRS Egyptian green pyramids rating system

FC Fuel cell

FD Frequency deviation

GS Green Stars
HC Hosting capacity
LV Low voltage

LEED Leadership in Energy and Environmental Design

NPC Neutral point clamped

MPPT Maximum power point tracking

MV Medium voltage

PCC Point of common coupling

PAFC Phosphoric acid membrane fuel cell PEMFC Polymer electrolyte membrane fuel cell

PO Power quality

PQI Power quality index

PV Photovoltaic

SOFC Solid oxide fuel cell

STPF Single-tuned passive filter
THD Total harmonic distortion
UPQI Unified power quality index
VSI Voltage source inverter
WMPID Weighted-modified PID

List of Publication

A Unified Index for Power Quality Evaluation in Distributed Generation Systems. Ghada S. Elbasuony, Ahmed M. Ibrahim, Shady H.E. Abdel Aleem, Adel M. Sharaf C. Energy 149 (2018) 607e622

^a Electrical Power and Machines Department, Faculty of Engineering, Cairo University, Giza, Egypt.

b 15th of May Higher Institute of Engineering, Mathematical and Physical Sciences,

Helwan, Cairo.

^c Sharaf Energy Systems, Inc., Fredericton-NB, E3C2P2, Canada.