Correlation of visual acuity with optical coherence tomography findings in diabetic macular edema

Thesis

Submitted for Partial Fulfillment of Master Degree of Ophthalmology

By **Ahmed Abdel Raouf Shalash**

M.B, B.CH Faculty of Medicine - Cairo University

Supervised by

Prof. Dr. Alaa Fathy Mahmoud

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr.Tamer Fahmy Eliwa

Lecturer of Ophthalmology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2011

Acknowledgment

First and foremost, I thank **Allah** the most gracious, the most merciful, for blessing this work until it reached its end as a part of his generous gifts throughout my life.

I wish to express my sincere thanks and deepest gratitude

to Prof Dr Alaa Fathy Mahmoud "Professor of

Ophthalmology, Faculty of medicine, Ain Shams

University" and Dr Tamer Fahmy Eliwa "Lecturer of

Ophthalmology, Ain shams University" for their kind

supervision, constructive guidance, continuous

encouragement and the valuable advice they offered me to

achieve this work.

Contents

* Introduction	
* Anatomy of the macula	4
* Pathophysiology of DME	
❖ Management of DME	30
❖ Review of literature	69
❖ Patients and methods	
* Results	80
❖ Discussion	94
* Summary	99
* References	102
* Arabic summary	128

List of abbreviations

ATP	Adenosine-5'-Triphosphate
BBB	Blood Brain Barrier
BRB	Blood Retinal Barrier
CME	Cystoid Macular Edema
CMT	Central Macular Thickness
CRT	Central Retinal Thickness
CSME	Clinically Significant Macular Edema
DAG	Diacylglycerol
DCCT	Diabetes Control And Complications Trial
DME	Diabetic Macular Edema
DR	Diabetic Retinopathy
DRCR NET	Diabetic Retinopathy Clinical Research Network
ETDRS	Early Treatment Of Diabetic Retinopathy Study
FA	Fluorescein Angiography
FAZ	Foveal Avascular Zone
FDA	Food And Drug Administration
FFA	Fundus Fluorescein Angiography
ILM	Internal Limiting Membrane
INL	Inner Nuclear Layer
IOP	Intraocular Pressure
IS	Inner Segment
LM	Light Microscope
МТ	Macular Thickness
No	Number

NPDR	Non Proliferative Diabetic Retinopathy
NFĸB	Nuclear factor kappa-light-chain-enhancer of activated B cells
ОСТ	Optical Coherence Tomography
ONL	Outer Nuclear Layer
OPL	Outer Plexiform Layer
os	Outer Segment
PDR	Proliferative Diabetic Retinopathy
PKC	Protein Kinase C
PKC-DMES	Protein Kinase C Inhibitor Diabetic Macular Edema Study
PPV	Pars Plana Vitrectomy
PROS	Photoreceptor Outer Segment
PVD	Posterior Vitreous Detachment
RCT	Random Clinical Trial
RPE	Retinal Pigment Epithelium
RT	Retinal Thickness
SD	Standard Deviation
SD-OCT	Spectral Domain Optical Coherence Tomography
SR	Subretinal
TD-OCT	Time Domain Optical Coherence Tomography
TGF	Transforming Growth Factor
ТЈ	Tight Junction
TNF	Tumor Necrosis Factor
VEGF	Vascular Endothelial Growth Factor
VMTS	Vitreomacular Traction Syndrome

List of Tables

Table no.	Title	Page
Table 1	Changes in focal/grid laser from the ETDRS to the present	56
Table 2	Frequency, percentages and results of chi-square test for comparison between gender distribution in the studied groups	80
Table 3	Mean, standard deviation (SD) and results of Mann-Whitney U test for comparison between Diabetes duration in the studied groups	81
Table 4	Mean, SD and results of Student's t-test for comparison between BCVA in the studied groups	82
Table 5	Mean, SD and results of Student's t-test for comparison between retinal thickness in the studied groups	83
Table 6	Mean, SD and results of Student's t-test for comparison between retinal volume in the studied groups	84
Table 7	Mean, SD and results of Student's t-test for comparison between photoreceptor layer thickness in the studied groups	85
Table 8	Mean, SD and results of Student's t-test for comparison between INL thickness in the studied groups	86
Table 9	Results of Pearson's correlation coefficient for the correlation between BCVA and different quantitative variables in study group	88
Table 10	The means, SD values and results of one-way ANOVA test for comparison between BCVA with different edema types	89
Table 11	The means, SD values and results of Mann-Whitney U test for comparison between BCVA in cases with or without subretinal fibrosis in the study group	90
Table 12	The means, SD values and results of Student's t-test for comparison between BCVA in cases with or without subretinal fluid in the study group	91
Table 13	The means, SD values and results of Student's t-test for comparison between BCVA in cases with or without photoreceptor damage in the study group	92
Table 14	Results of Pearson's correlation coefficient for the correlation between BCVA and different quantitative variables in control group	93

List of Figures

Figure	Title	Page
Fig 1	Fundus photograph of the macular region	6
Fig 2	Light micrograph of human macula and fovea	7
Fig 3	A side view of two adjacent vascular endothelial cells	9
Fig 4	An electron micrograph of two vascular endothelial cells	13
Fig 5	Model of the retinal pigment epithelial pumping mechanism.	15
Fig 6	Metabolic pathways implicated in the development of diabetic microvascular complications	17
Fig 7	The mechanism by which superoxide production in the mitochondria activates the four biochemical pathways that lead to diabetic retinopathy	18
Fig 8	Advanced Glycation End Products formation	20
Fig 9	Activation of Protein Kinase C	22
Fig 10	The hexosamine pathway	23
Fig 11	The physics of macular edema governed by Starling's law	24
Fig 12	Fundus photograph of diabetic traction macular detachment with mild vitreous hemorrhage	30
Fig 13	Grading of DME	38
Fig 14	Focal Diabetic Macular Edema	39
Fig 15	Diffuse Diabetic Macular Edema	40
Fig 16	Cystoid Diabetic Macular Edema	40
Fig 17	Ischemic Diabetic Maculopathy	41

Fig 18	Schematic diagram showing systems of retinal sampling used by the Cirrus HD-OCT and Stratus OCT systems.	43
Fig 19	Normative data for macular thickness analysis using OCT	45
Fig 20	Diffuse Macular Edema as viewed by OCT	46
Fig 21	Cystoid Macular Edema as viewed by OCT	46
Fig 22	Subretinal fluid as viewed by OCT	47
Fig 23	Posterior hyaloidal traction as viewed by OCT	48
Fig 24	Tractional retinal detachment as viewed by OCT	48
Fig 25	OCT horizontal radial line scans documenting the macular morphology following therapeutic intervention	49
Fig 26	Vitreomacular traction syndrome as viewed by OCT	50
Fig 27	Diagrammatic representation of focal/modified grid laser	55
Fig 28	Eye showing subfoveal retinal pigment epithelial metaplasia after focal photocoagulation for diabetic macular edema	57
Fig 29	A subretinal neovascular membrane with surrounding subretinal hemorrhage arising from the site of a focal laser burn in the inferior perifoveal zone	58
Fig 30	(A) FFA of CME. (B) OCT demonstrates cystic macular changes. (C) OCT image illustrates the resolution of macular edema after intravitreal triamcinolone. (D,E) Improvement on the macular thickness map.	61
Fig 31	OCT scan for case no. 6 in study group (group A) patients	80
Fig 32	OCT scan for case no. 1 in control group (group B) patients	81
Fig 33	Bar chart representing gender distribution among group A and group B individuals	84
Fig 34	Bar chart representing mean diabetes duration in group A and group B individuals	85
Fig 35	Bar chart representing mean BCVA in group A and group B individuals	86

Fig 36	Bar chart representing mean retinal thickness in group A and group B individuals	87
Fig 37	Bar chart representing mean retinal volume in group A and group B individuals	88
Fig 38	Bar chart representing mean photoreceptor layer thickness in group A and group B individuals	89
Fig 39	Bar chart representing mean INL thickness in group A and group B individuals	90
Fig 40	Bar chart representing mean BCVA with different types of edema in the study group	92
Fig 41	Bar chart representing mean BCVA in cases with or without subretinal fibrosis in the study group	93
Fig 42	Bar chart representing mean BCVA in cases with or without subretinal fluid in the study group	94
Fig 43	Bar chart representing mean BCVA in cases with or without photoreceptor damage in the study group	95

Introduction

Diabetic retinopathy (DR) is one of the major complications of diabetes mellitus, which can eventually lead to blindness. DR affects up to 80% of all patients who have had diabetes for 10 years or more. Despite these intimidating statistics, research indicates that at least 90% of these new cases could be reduced if there was proper and vigilant treatment and monitoring of the eyes (*Tapp et al*, 2003).

DME is increasing in prevalence throughout the world. In crosssectional studies, the prevalence of DME in patients with diabetes has been reported to be 1.0–5.7%. The prevalence of DME in patients with diabetic retinopathy has been reported to be 2.7–11.0% (Xie et al, 2008).

Retinal hypoxia is the natural consequence of retinal vascular dysfunction associated with diabetic retinopathy. In response to local hypoxia, affected tissues in the retina and elsewhere upregulate the production of vascular endothelial growth factor (VEGF). VEGF is not only a potent angiogenic stimulus, but it also induces vascular permeability up to 50,000 times more potent than that of histamine. This will result in breakdown of the blood-retina barrier and accumulation of extracellular fluid with the subsequent development of macular edema (Ferrara, 2003).

The onset of Diabetic Macular Edema (DME) is usually insidious and painless however, patients with macular edema may complain from impairment of central vision which is the main symptom (positive scotoma),

metamorphopsia, micropsia and macropsia. Clinical examination includes visual acuity, which is the most important test of macular function and amsler grid which evaluates 10 degrees of the visual field surrounding fixation and is useful for both screening and monitoring of macular diseases (*Hainsworth*, 2005).

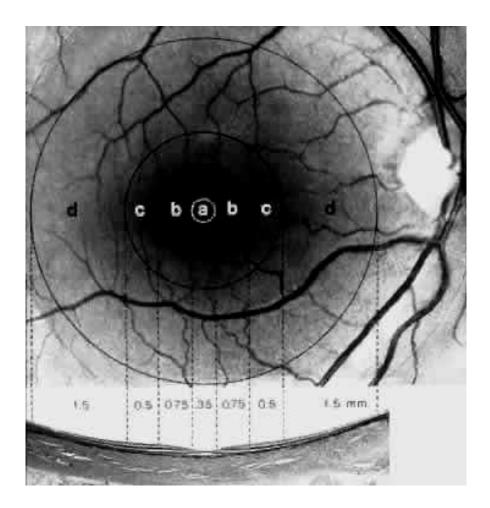
Common methods of evaluating clinically significant macular edema (CSME) include slit-lamp biomicroscopy, with contact or non contact lens, indirect ophthalmoscopy, and fundus stereophotography. CSME was defined according to the Early Treatment of Diabetic Retinopathy Study (ETDRS) classification protocol as existence of any of the following criteria:

- (A) Presence of any retinal thickening within 500 μm of the foveal center.
- (\mathbf{B}) Hard exudates within 500 μm of the foveal center with adjacent thickening.
- (C) An area of thickening > 1 Macular Photocoagulation Study disc area (1 disc area $\cong 1.767$ mm2) within 1 disk diameter (1.5 mm) of the foveal center. However, none of these methods provides an objective quantitative measurement of CSME (*ETDRS*, 1985).

Fundus Fluorescein angiography (FFA) has been used to detect leakage of fluorescein from microaneurysms and other leakage sources in diabetic retinopathy. The major advantage of FFA is the ability to detect early alterations of the blood retinal barrier (BRB), capillary closure and microaneurysm formation (*Cunha-Vaz*, 2000). However, FFA does not assess the function of the retinal pigment epithelial pump, thus the correlation of fluorescein leakage with macular thickening is modest (*Sander et al*, 2008).

Optical coherence tomography (OCT) provides high-resolution (5 microns) imaging of the vitreoretinal interface, retina, and subretinal space. Optical coherence tomography can be useful for quantifying retinal thickness, monitoring macular edema, and identifying vitreomacular traction in selected patients with diabetic macular edema. However, optical coherence tomography measures of retinal thickness correlate poorly with visual acuity (Strom et al, 2002).

Although fluorescein angiography has been used to assess vascular leakage qualitatively in macular edema, optical coherence tomography (OCT) can offer high-resolution cross-sectional images of the retina and quantitative measurement of the retinal thickness. Therefore, the physiologic aspect of clinically significant diabetic macular edema can be assessed with fluorescein angiography, and the anatomical features of clinically significant diabetic macular edema such as the extent of thickening and the retinal layer involved can be assessed with OCT (Brancato, 1999).


In addition to laser photocoagulation, the appearance of new therapeutic modalities such as intravitreal corticosteroid injection or vitrectomy for treatment of clinically significant diabetic macular edema has made it worthwhile to classify clinically significant diabetic macular edema with fluorescein angiography and OCT and to make correlations between them to choose the best line of treatment (Yang, 2001).

Anatomy of the Macula

The macula lutea is an oval, yellowish area at the center of the posterior part of the retina. It measures about 5 mm in diameter and lies about 3 mm to the lateral side of the optic disc. The yellow coloration of the macula is caused by the yellow carotenoid pigment Xanthophyll which is present in the retina from the outer nuclear layer inwards (Mafee et al., *2005*).

The fovea centralis is a depressed area in the center of the macula lutea measuring about 1.5 mm in diameter. The sides of the depression are called the clivus. The floor of the depression is known as the foveola. The depression is formed of the nerve cells and fibres of the inner layers of the retina being displaced peripherially, leaving only the photoreceptors in the center (Fig.1-2). The fovea shows the highest concentration of cones (147,000/mm²) and no rod cells in the floor of the fovea. There are no ganglion cells directly overlying the cones, they are displaced laterally. One cone synapses with one bipolar cell which links to one ganglion cell. These anatomic features enhance resolution, provide color vision and make the fovea the center of vision (Snell, 1998).

The outer retina throughout the macula is avascular and receives oxygenation by diffusion from the deeper choriocapillaris (Stefansson et al. *2006*).

Fig.1: A fundus photograph is matched with a meridional light micrograph of the macular region. The fundus photograph shows the foveola (a), fovea (b), parafovea (c), and perifovea (d) (*Hogan MJ et al., 1971*).

The inner nuclear layer cells are displaced laterally so that photoreceptor axons in the outer plexiform layer course radially to synapse onto horizontal and bipolar cells. The thick layer of radial axons is termed the *fiber layer of Henle*. Rods with long, thin outer segments are present in the slope of the wall of the fovea. The central rod-free area is 350 to 600 μ m in diameter (*Curcio CA et al, 1990*).