

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

HYBRID STRENGTHENING BETWEEN OLD AND NEW REINFORCED CONCRETE SLABS

\mathbf{BY}

MARWA MOHAMMED IBRAHIM HASSANIN

B.Sc.2012 Structure Engineering Department

Ain Shams University

THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Structural Engineering

Supervised by

Prof. Dr. Said Alv Mohamed

Prof. Dr. Omar Alv Mousa

ElNawawy	Taher
Professor of Reinforced Concrete	Professor of Reinforced Concrete
Structures	Structures
Faculty of Engineering - Ain shams	Housing & Building National
University	Research Center

HYBRID STRENGTHENING BETWEEN OLD AND NEW REINFORCED CONCRETE SLABS

BY

MARWA MOHAMMED IBRAHIM HASSANIN

A thesis Submitted to the

Faculty of Engineering at Ain Shams University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

In

Structural Engineering

Supervised by

Prof. Dr. Omar Aly Mousa ElNawawy

Professor of Reinforced Concrete Structures Faculty of Engineering - Ain shams University

Prof. Dr. Said Aly Mohamed Taher

Professor of Reinforced Concrete Structures Housing & Building National Research Center

Cairo

2017

ACKNOWLEDGMENT

First of all thanks to GOD for helping me to complete this Study.

No words can express my deep gratitude to

Professor Dr. Omar Aly Mousa ElNawawy, Professor of Concrete Structures, Structural Engineering Department, Faculty of Engineering, Ain Shams University for his kind supervision,

Encouragement, valuable instruction and constant help. He really offered me much of his time, experience, constructive critic and scientific advices during executing the plan of work.

I would like to express my sincerest appreciation to my advisor **Professor Dr. Said Aly Mohammed Tahir** for his continuous support, valuable guidance, and giving me opportunity to be involved in such an interesting research.

I would like to thank the technicians of reinforced concrete laboratory, Housing and Building National Research Center.

Finally, I would like to thank my friends and colleagues who helped me in the complication of this work.

DEDICATION

THIS DISSERTATION IS DEDICATED TO THE
SOURCE OF LOVE AND SUPPORT,
MY BELOVED AND WONDERFUL
MOTHER (Dr. SALA ALAALNABY ABOLKHER),
FATHER (Mr. MOHAMED HAMZA)
AND HUSBAND (ENG. OSAMA RADWAN)

WHO

DEDICATED THEIR ENTIRE LIFE FOR MY SUCCESS

AND ALWAYS ENCOURAGES ME TO PURSUE ALL

MY DREAMS AND BELIEVE WITHOUT A DOUBT

THAT I WILL FULFILL THEM.

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTRAL ENGINEERING DEPARTMENT

Abstract of the M.Sc. Thesis Submitted

Eng. / Marwa Mohammed Ibrahim Hassanin

Title of The Thesis:

HYBRID STRENGTHENING BETWEEN OLD AND NEW REINFORCED CONCRETE SLABS

ABSTRACT

Studies have shown that there are several factors that affect the strength of the connections between old and new reinforced concrete slabs that must be taken into consideration including: (concrete strength—roughening of the surface of old concrete - the impact of the bonding material - the presence of shear connectors etc.).

This research aims to study experimentally and numerically the effect of roughening of the surface of old concrete, the bonding materials and the importance of the presence of shear connectors at the link between the old and new reinforced concrete slabs on both tension and compression side of the old slab.

The experimental program was includes testing (10) samples of concrete slabs. First group consists of two reference samples with total depth (12 cm), other (8) samples were prepared as sandwich sample, the two layers (6cm + 6cm) and the work of linking those two classes was by using different materials.

A numerical analysis applying the finite element method by using Ansys 14 was done as a theoretical study that supports the results of the experimental program in this research.

A comparison was made between the results of the experimental program with the results of the numerical analysis and it was found that there is a good agreement between them.

CONTENTS

	Page
ACKNOWLEDGMENT	i
DEDICATION.	ii
ABSTRACT	iii
CONTENTS.	V
LIST OF TABLES	vii
LIST OF FIGURES.	viii
CHAPTER (1): INTRODUCTION	
1.1 General	
1.2 Objectives and scope	2
1.3Thesis organization	2
CHAPTER (2): LITERATURE REVIEW	
2.1 General	3
2.2 Historical back ground	3
CHAPTER (3): EXPERIMENTAL PROGRAM	
3.1 Introduction	30
3.2 Materials	37
3.2.1 Concrete.	37
3.2.1.1Coarse Aggregates (C.A)	37
3.2.1-2 Fine Aggregates (F.A)	39
3.2.2 Cement (C)	41
3.2.3 Water	42
3.2.4 Mix Design	43
3.2.5 Steel Reinforcement	45
3.3 Wooden shuttering of slabs	47

	Page
3.4 Roughening the Old concrete surface	50
3.5 Salving the Mortar on Old concrete	53
3-6 Salving the Epoxy on Old concrete	53
3- Shear connectors on Old concrete	55
CHAPTER (4): EXPERIMENTAL RESULTS	
4.1 Introduction	58
CHAPTER (5): NUMERICAL ANALYSIS	
5.1 Introduction	83
5.2Material Properties of (FEM)	83
5.2.1 Material Properties of (FEM) - Structural Components	83
5.2.2 Material Properties of (FEM) – factors	89
5.3 Meshing.	99
5.4 Bond between Concrete and Reinforcement	100
5.5Solution Planning.	100
CHAPTER (6): SUMMARY AND CONCLUSIONS	
6.1 Summary	121
6.2Conclusions	122
6.3 Recommendation for future studies	123
REFRENCES	124

LIST OF TABLES

I	Page
Table 3.3: The tested specimens in the experimental program,	36
Table 3.2: Pr operties of the used dolomite	38
Table 3.3: The results of sieve analysis (dolomite)	39
Table 3. 4: Strainer investigation of used aggregates	40
Table 3. 5: Specific gravity and absorption for used Aggregates	40
Table 3.6: Crushing factor test for coarse aggregates	41
Table 3-7: Properties of used cement	42
Table 3. 8: Concrete compressive strength	44
Table 3. 9 : Properties of steel used in the experimental	47
Table 4.1: Initial and Ultimate Crack load for each sample	58
Table 4.2 : Final results and ratios for each sample	78
Table 5.1: Finite Element Representation of Structural Components	105
Table 5.2 Material Properties Parameters for Slab Specimens	.106
Table 5.3 Geometrical dim. and materials properties of "Ansys 14"	.107
Table 5. 4 Comparing the final results and ratios between Experiment	tal
and Finite element analyses for each samples	.109

LIST OF FIGURES

Pa	ge
Fig. 3.1: Expectant slabs deformation shape	30
Fig. 3. 2: Dimensions for the reference slab	.31
Fig. 3 .3: New RC concrete under old RC slab to check tension loads	.32
Fig. 3. 4: New RC concrete over old RC slab to check compression	
Loads	32
Fig. 3.5: Strengthening a slab by increasing its depth from bottom	33
Fig. 3 .6: Strengthening a slab by increasing its depth from top	34
Fig. 3.7: The crushed dolomite	38
Fig. 3.8: The natural sand.	39
Fig. 3.9: Weight of water.	42
Fig. 3.10: Casting and compacting concrete cubes	45
Fig. 3. 11: The steel mesh which used in slabs RFT	46
Fig. 3.12: Wooden shuttering and array the RFT of the specimens	48
Fig. 3.13: Casting fresh concrete of the slabs.	.49
Fig. 3.14: Roughening the old concrete face	52
Fig. 3.15: Salving mortar above the specimens	.53
Fig. 3.16: Epoxy mixture content	54
Fig. 3.17: Shear connectors arrangement	55
Fig. 3.18: Marking the shear connectors positions	55

.	Page
Fig. 3.19: Marking the shear connectors	56
Fig. 3.20: Holding the marks positions	56
Fig. 3.21: Fill the holes with Epoxy and put the shear connectors	57
Fig. 3.22: Salving all the slabs with Epoxy	57
Fig. 4. 1: Details of reference samples.	59
Fig. 4. 2: Details of tension samples	59
Fig. 4. 3: Details of compression samples.	. 60
Fig. 4.4: The machine for the test.	60
Fig. 4.5: LVDT arrangement.	62
Fig. 4. 6: Crack pattern of Reference samples	63
Fig. 4. 7: S3- crack pattern	64
Fig. 4.8: S4- crack pattern	65
Fig. 4.9: S5- crack pattern	66
Fig. 4. 10: S6- crack pattern	67
Fig. 4. 11: S7- crack pattern	68
Fig. 4. 12: S8- crack pattern	69
Fig. 4. 13: S9- crack pattern	70
Fig. 4. 14: S10- crack pattern.	71
Fig. 4. 15: Ultimate Load and Deformation of Reference Sample	72
Fig. 4. 16: Ultimate Load and Deformation of Mortar Sample Under	
Compression	72

	Page
Fig. 4. 17: Ultimate load and deformation of mortar sample under	
Tension	73
Fig. 4. 18: Ultimate load and deformation of epoxy sample under	
compression	73
F ig. 4. 19: Ultimate load and deformation of epoxy sample under	
tension	74
Fig. 4. 20: Ultimate load and deformation of epoxy and dowels	
sample under compression	74
Fig. 4. 21: Ultimate Load and deformation of epoxy and dowels	
Sample under Tension	75
Fig. 4 .22: Comparing between ultimate load and deformation of	
mortar samples under compression and tension	75
Fig. 4. 23: Comparing between ultimate load and deformation of	
epoxy samples under compression and tension	76
Fig. 4. 24: Comparing between ultimate load and deformation of	
epoxy and dowels samples under compression and tension	76
Fig. 4. 25: Comparing between ultimate load and deformation of	
samples under compression	77
Fig. 4. 26: Comparing between ultimate load and deformation of	
samples under tension	77
Fig. 4. 27: Deformation for each slab.	78
Fig. 4. 28: Initial crack load for each slab.	78

	Page
Fig. 4. 29: Ultimate crack load for each slab.	79
Fig. 4. 30: Deformation for each slab - Tens. Test	79
Fig. 4. 31: Deformation for each slab - Comp. Test	80
Fig. 4. 32: Ultimate Load – Tens. Test	80
Fig. 4. 33: Ultimate Load – Comp. Test	81
Fig. 4. 34: Ultimate Load for Each Slab	81
Fig. 5. 1: "SOLID65" 3-D solid element of the reinforced Concrete.	86
Fig. 5. 2: "SOLID65" 3-D stress output	86
Fig. 5. 3: "LINK8-3D" element bars	87
Fig. 5. 4: Models for reinforcement in reinforced concrete elements.	89
Fig. 5. 5: Typical concrete stress-strain curves	91
Fig. 5. 6: Initial tangent modulus of concrete	92
Fig. 5. 7: Relationship between compressive stress and poisons ratio	93
Fig. 5. 8: Modified curve for concrete stress-strain relation	96
Fig. 5. 9: Steel reinforcement Stress-Strain curve	97
Fig. 5. 10: Incremental "Newton-Raphson" procedure	99
Fig. 5. 11: Load steps, sub-steps, and time	103
Fig. 5. 12: Traditional "Newton-Raphson" method vs. arc-length	
	ethod
Fig. 5. 13: Model of Slab on Ansys program.	108
Fig. 5. 14: Initial crack load for each slab by (FEM)	110

Page
Fig. 5. 15: Ultimate load for each slab by (FEM)
Fig. 5. 16: Ultimate Deformation for each slab by (FEM)
Fig. 5. 17: Ultimate Load and Deformation of Reference Sample by
(FEM)111
Fig. 5.18: Ultimate Load and Deformation of Mortar Sample Under
Compression Sample by (FEM)
Fig. 5.19: Ultimate Load and Deformation of Mortar Sample Under
Tension by (FEM)
Fig. 5. 20: Ultimate Load and Deformation of Epoxy Sample Under
Tension by (FEM)
Fig. 5. 21: Ultimate Load and Deformation of Epoxy Sample Under
Compression by (FEM)
Fig. 5. 22: Ultimate Load and Deformation of Epoxy and Dowels
Sample under Tension by (FEM)
Fig. 5. 23: Ultimate Load and Deformation of Epoxy and Dowels
Sample under Compression by (FEM)
Fig. 5. 24: Comparing between Ultimate Load and Deformation for
each Epoxy Samples by (FEM)
Fig. 5. 25: Comparing between Ultimate Load and Deformation for
each Mortar Samples by (FEM)