The Effect of Dynamic Fatigue Forces on Retentivity of Different Designs of Resin Bonded Fixed Partial Dentures

Thesis
Submitted to Restorative Department
(Fixed Prosthodontics)
Faculty of Dentistry-Ain Shams University
(In partial fulfillment of requirements of Doctor Degree)

By
Nasser Hussein Ali Fahmy
B.D.S (Cairo university)
MSc. Fixed Prosthodontics - Cairo university

Faculty of Dentistry - Ain Shams University

SUPERVISORS

Prof. Dr. Mokhtar Nagi Ibrahim

Professor of Restorative Dentistry, Former dean of Faculty of Dentistry, Ain Shams University

PROF. DR. ASHRAF HUSSEIN SHERIF

Professor of Fixed Prosthodontics,
Vice Dean of Education and Students Affair
Faculty of Oral and Dental Medicine,
Cairo University

PROF.DR. AMINA MOHAMED HAMDY

Assistant professor and head of Fixed Prosthodnotic department, Faculty of Dentistry, Ain Shams University تثثت الله الاحتارا بالله بسئ

صدق الله العطيم

﴿ الآية ٣٢ سورة البقرة ﴾

تأثير قوى الإجهاد الحركى على قوة استبقاء تصميمات مختلفة من الأطقم الجزئية المثبتة المربوطة بالراتنج

رسالة مقدمة إلى قسم الطب التحفظى (التيجان و الجسور) كلية طب الأسنان – جامعة عين شمس لنيل درجة الدكتوراه

مقدمة من

ناصر حسين على فهمى ماجستير التيجان و الجسور. جامعة القاهرة

> كلية طب الأسنان - جامعة عين شمس ٢٠٠٨

المشرفون

أ.د. مختار ناجی إبراهيم

أستاذ العلاج التحفظي و عميد كلية طب الأسنان - جامعة عين شمس- سابقا-

أ.د. أشرف حسين شريف

أستاذ الإستعاضات السنية المثبتة ووكيل كلية طب الفم و الأسنان – جامعة القاهرة – لشئون التعليم والطلاب

أ.م.د. أمينة محمد حمدي حسن

أستاذ م. و رئيس قسم التيجان و الجسور بكلية طب الأسنان . جامعة عين شمس

List of contents

List of tables	ii
List of figures	iv
Introduction	١
Review of literatures	٥
Aim of the study	oλ
Materials and method	٥٩
Results	10.
Discussion	۱۸٤
Summary and conclusion	۲ . ٤
References	۲.۸
Arabic summary	١

List of tables

Table	Title	Page
١	Grouping of the samples	99
۲	Porcelain firing cycles	١٢٤
٣	Grouping of the patients	1 2 8
٤	Recording the gingival index	١٤٨
٥	Clinical assessment chart	1 £ 9
٦	Descriptive statistics of debonding forces in Newton of all the tested designs of resin- bonded bridges	101
٧	Descriptive statistics and test of significance for the effect of bridge design and preparation on debonding force (in Newton) in un-fatigued samples	107
٨	Descriptive statistics and test of significance for the effect of bridge design and preparation on debonding force (in Newton) in fatigued samples	107
٩	Descriptive statistics and test of significance for the effect of fatigue on debonding force (in Newton) in samples without grooves	17.
1.	Descriptive statistics and test of significance for the effect of fatigue on debonding force (in Newton) in samples with grooves	171
11	Prevalence of debonding in different bridge designs and preparations.	١٧٢

	•	
17	Descriptive statistics and test of significance for the effect of bridge design and preparation on durability of the bridges.	١٧٣
١٣	Prevalence and test of significance for the effect of bridge design, preparation, and clinical service period on the marginal integrity.	140
١٤	Prevalence and test of significance for the effect of bridge design and preparation on caries.	177
10	Descriptive statistics and test of significance for the effect of bridge design and preparation on pocket depth of the central incisors	١٧٨
١٦	Descriptive statistics and test of significance for the effect of bridge design and preparation on pocket depth of the canine.	1 7 9
17	Descriptive statistics and test of significance for the effect of bridge design and preparation on gingival index of the central incisor abutment	١٨١
١٨	Descriptive statistics and test of significance for the effect of bridge design and preparation on gingival index of the canines.	111

List of figures

Figure	Title	Page
١	Multilink system kit	٦٠
۲	Measuring crown dimensions	٦٤
٣	Teflon mold assembly	٦٣
٤	Dentin pins kit	٦٥
٥	Dentin pins inserted	٦٦
٦	Determination of long axis of the tooth (Top view)	٦٧
٧	Determination of long axis of the tooth (Side view)	٦٨
٨	Imbedding tooth into the mold	٧.
٩	Teeth blocks	
١.	Attachment base for the holding device	٧١
11	Rod of the holding device	٧٣
17	Mounting pipe	٧٤
١٣	Tooth block mounted inside mounting pipe	٧٥
١٤	Assembling holding device	٧٦
10	Holding device assembled	YY
١٦	The mesio distal axis of the tooth in relation to the axis of rotation of the wheel stone	٧٨
1 V	Orientation of the mounting pipe during preparation of the palatal fossa of the central incisors	٧٩
١٨	Orientation of the mounting pipe during preparation of the mesiopalatal and distopalatal fossae of the canines	٧٩
19	A specially constructed mounting device	۸٠
۲.	The acrylic block inserted into silicon rubber tube	۸۲
۲۱	Duplication of average tooth alignment	۸۳
77	Positioning index	٨٥
7 ٣	Periotest	۸٧

7 £	The in vitro model in the mounting base	٨٩
70	Marking standardized points for measurements	٩.
77	Measuring the distance between the selected points	٩.
77	Spot grinding of the axial surfaces to reach a matching dimensions	91
۲۸	Final tooth preparation of the master model without proximal grooves	٩٣
79	Duplication of the master preparation by Celay machine	9 £
٣.	Preparation with proximal grooves	97
٣1	Specially constructed perforated acrylic tray	١
٣٢	The waxing index	1.7
٣٣	The waxing index screwed to the mounting device	1 • £
٣٤	Outlining the borders of the waxing index with sprue wax	1.0
٣0	Refractory cast of the assembly	١٠٦
٣٦	Standardization of the wax pattern by the waxing index	١.٧
٣٧	Fixed-Fixed resin-bonded bridge	١٠٨
٣٨	Attachment coil connected to the pontic after waxing the bridge to anatomic form	1.9
٣9	Cantilever resin-bonded bridge	11.
٤٠	Fixed-Supported resin-bonded bridge	111
٤١	Functionally-Split resin-bonded bridge	111
٤٢	The retainer with the stress director	117
٤٣	Stone cast base former	۱۱۳
٤٤	The wooden model for the aluminum base	110
٤٥	The specially constructed aluminum base for mounting of the stress director	110
٤٦	Milling of the stress director	١١٦
٤٧	Remounting index	117

٤٨	Construction of the remounting index	١١٨
٤٩	Waxing up the remaining part of the	119
	functionally-split bridge	111
٥,	The stress director inserted in the remounting	١٢.
	index	114
01	Remounting the stress director	١٢.
٥٢	Tapering the stress direct	171
٥٣	The indirect spruing of the wax pattern after	
	attaching the attachment coil to the pontic by	177
	sticky wax	
٥ ٤	Intra-oral micro etcher	١٢٦
00	Load application during cementation	١٢٨
٥٦	Cyclic mechanical loading	۱۳۰
٥٧	Abutment extrusion preventer screwed before	١٣٢
	tension loading of the bridge	
OV	Tensile loading of the bridges	١٣٣
٥٩	Debonding of a conventional fixed-fixed bridge	١٣٤
٦.	Debonded fixed-supported bridge	170
٦١	Scanning Electron Microscope	170
77	Gold coated samples	١٣٦
٦٣	The Sputter coater	١٣٦
٦٤	Cemented conventional fixed-fixed resin-	1 £ 1
	bonded bridge	
70	Cemented functionally-split resin-bonded	١٤١
	bridge	
٦٦	Cemented fixed-supported resin-bonded	1 2 7
	bridge	
٦٧	Cemented cantilever resin-bonded bridge	1 £ 7
٦٨	Mean debonding force in different bridge	
	designs within each preparation in un-fatigued	105
	samples (T subgroups)	

7.9	Mean debonding force in different preparations within each bridge design in unfatigued samples (T subgroups)	100
٧٠	Mean debonding force in different preparations within each bridge design in unfatigued samples (T subgroups)	١٥٨
٧١	Mean debonding force in different preparations within each bridge design in fatigued samples	109
٧٢	Mean debonding force in fatigued and unfatigued bridges in division I preparation (without grooves)	١٦٣
٧٣	Mean debonding force in fatigued and unfatigued bridges in division II preparation (with grooves)	172
٧٤	Debonded abutments of conventional fixed-fixed RBBs prepared with proximal grooves	170
Yo	Inspection of the debonded tooth surface under \.X magnifying lens	177
Y 1	Debonded surface of un-fatigued fixed supported RBB abutment, prepared without grooves, showing adhesive failure at toothcement interface.	177

VV	Debonded tooth surface of an abutment of fatigued functionally-split RBB, showing exposed tooth surface (A), area covered with resin cement(B), Spots of resin primer (the arrows).	174
٧٨	Debonded abutment surface of fatigued functionally-split RBB, showing remnants of cement trapped within the surface.	١٦٨
٧٩	Debonded abutment surface of fatigued conventional RBB showing areas of exposed tooth surface (A), areas covered with resin cement (B), and desquamated metal fragment(C).	١٦٨
۸۰	Debonded surface of un fatigued conventional fixed-fixed RBB	179
۸۱	Debonded surface of un-fatigued fixed- supported RBB showing areas of exposed tooth surface (A), areas covered with resin cement (B), and spots of resin primer (the arrows).	14.
۸۲	Debonded metal surface of fatigued conventional RBB retainer showing areas of exposed metal (A), areas covered with resin cement (B), spots of resin primer (the arrows), and detached fragment of tooth structure(C).	14.

۸۳	Debonded metal surface of fatigued conventional RBB retainer showing areas of exposed metal (A), areas covered with resin cement (B), spots of resin primer (the arrows), and detached fragment of tooth structure(C).	1 V E
۸٤	caries near the margin of a fixed-Supported bridge	177
٨٥	Response of functionally-split bridge to dislodging force	198

Aim of the study

This study was designed to:

- Y. Evaluate the effect of dynamic fatigue on retention of the following resin-bonded bridge designs:
 - a. Functionally-Split design (Two-part design with stress director and hollow-pontic).
 - b. Fixed-supported design.
 - c. Cantilever design.
 - d. Conventional fixed-fixed design(Traditional one piece design).
- Y. Evaluate the effect of tooth preparation with proximal grooves on the retentivity of the previously mentioned designs.
- r. Characterization of the failure pattern of various suggested bridge designs.
- E. Assessment of the clinical performance of the suggested designs.