

Generation Adequacy Assessment Using Analytical and Sequential Simulation Techniques

M.Sc. Thesis

RV

Eng. Reda Awad-Allah

Submitted in partial fulfillment of the requirements for the Master of Science degree in electrical engineering

Supervised by

Prof. Dr. A. R. Abul Wafa

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Prof. Dr. M. A. Mostafa

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Cairo - 2009

Approval Sheet

For Thesis with Title

Generation Adequacy Assessment Using Analytical and Sequential Simulation Techniques

Submitted in partial fulfillment for the requirement of degree in Master of Science in Electric Engineering

Presented By

Eng. Reda Awadallah

Prof. Dr. Ahmed Rizk Abul'Wafa Faculty of Engineering, Ain-Shams University Prof. Dr. Ahmed Rizk Abul'Wafa Faculty of Engineering, Ain-Shams University Prof. Dr. Ahmed Rizk Abul'Wafa Faculty of Engineering, Ain-Shams University Prof. Dr. Mahmoud Adel'Hameed Mostafa Faculty of Engineering, Ain-Shams University

Statement

This Thesis is submitted to Ain Shams University in partial fulfillment of the requirements of M.Sc. degree in Electrical Engineering.

The work included in this thesis is carried out by the author in the Department of Electrical Power and Machines, Faculty of Engineering, Ain Shams University.

No Part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date : 26th December 2009

Name : Reda Awadallah El-Sayed Mohamed

Signature:

Acknowledgments Acknowledgments

Prays Be To ALLAH

I would like to express my sincere gratitude to my supervisor

Prof. Dr. A. R. Abul'Wafa, whose encouragement, support and guidance helped me all the time during my research and writing this thesis. His insights and knowledge were extremely valuable.

I also wish to express my appreciation to *Prof. Dr. M. A. Mostafa* for his guidance and assistance in providing some data for this thesis. My gratitude to the department staff for strengthening my knowledge on electrical engineering

Last and certainly not least, I would also like to thank *my* family for their ongoing encouragement and support.

Reda Awad-Allah Cairo, 2009

Abstract

Generation Adequacy Assessment Using Analytical and Sequential Simulation Techniques

Modern electric power systems have the responsibility of providing a reliable and economic supply of electrical energy to their customers. The economic and social effects of loss of electric service can have significant impacts on both the utility supplying electric energy and the end users of the service. Maintaining a reliable power supply is therefore a very important issue in power system design and operation.

This thesis focuses on adequacy assessment of power generation using an analytical technique and Monte Carlo method. Monte Carlo simulation can be considered to be more preferable than an analytical approach in situations which involve, for example: Time-dependent or chronological issues; duty cycle of peaking units, Nonexponential component state duration distributions. Simulation results produced the same expected reliability indices as those obtained analytically. Beside it provided the probability distribution associated with the various reliability indices, which, in consequence, provided additional and more informative data about the behavior of the system.

Most published analytical algorithms take assumption and approximation on the Generation Model or Load Model to reduce the calculation time or computer memory. So, the thesis worked on two parts as the following:

1- Development elaborated an analytical algorithm to get accurate

reliability indices. Computation results of this algorithm are used as a benchmark.

2- Development an algorithm to calculate reliability indices by Monte Carlo Simulation. Monte Carlo Simulation (MCS) proves to be sound in simulating generation system with exponentially distributed state residence time. It also capable of simulating operating histories for a unit with Weibull, normal or log-normal distributed state residence times. Data of IEEE RTS are modified to consider last possibility.

Both the analytical and the simulation programs were extensively used to get accurate reliability indices and to investigate the following:

- a. Effect of Derated States.
- b. Effects of Load Forecast Uncertainty
- c. Effect of Scheduled Maintenance
- d. Effect of Additional Generation (Gas Turbine).

The research in this thesis was conducted using the analytical and simulation programs to "IEEE-RTS" reliability test.

ملخص الرسالة

الهدف الرئيسى من نظم القوى الكهربية هو تحقيق رغبة المستهلك في الحصول على طاقة كهربية ذات درجة عول عالية وتكلفة اقتصادية مناسبة وللوصول إلى مستوى جيد من العول فإنه يلزم حساب مؤشرات العول التى يجب توافرها لتحقيق هذا المستوى. ويتم عادة تقدير عول التوليد باستخدام الطرق التحليلية أو الطرق التمثيلية.

يقدم هذا البحث تقدير عول التوليد باستخدام الطرق التحليلية و الطرق التمثيلية إلا أنه باستخدام الطرق التمثيلية (تقنية مونت كارلو) تتحقق نفس النتائج إضافة إلى توفير نتائج أخرى إضافية لا يمكن الحصول عليها باستخدام الطرق التحليلية (التوزيع الإحتمالي لمؤشرات العول كمثال) إضافة إلى أن التقنية الأخيرة يمكن أن تقبل توزيعات إحتمالية آخرى (ويبل وجاودس ولوغارتمي وغيرها) غيرالتوزيع بدالة أسية لمتغيرات العول الذي تعتمده كل الطرق التحليلية.

تلاحظ أن الكثير من تقنيات حسابات عول التوليد غالبا ما تحوى تقريبات وفروض فى نمذجة التوليد والأحمال و/أو خوارزم الحساب وذلك لاختصار وقت الحساب الطويل وللتغلب على محدودية ذاكرة الحاسب. كل هذه البنود تجعل من نتائج الحساب تقريبية. بناء على هذه الأسباب فإنه لايمكن معرفة مقدار عدم دقة النتائج مع اعتماد تقريب أو أكثر مالم تتم مقارنتها مع نتائج يتم الحصول عليها من خوارزم حساب دقيق لايحوى التقريبات المذكورة.

لذلك تم العمل في هذه الرسالة على هدفين:

- أولاً: تم تطوير خوارزم حساب دقيق لعول التوليد (طريقة تحليلية) يتم عن طريقه الحصول على مجموعة من النتائج ذات مستوى دقة عال يمكن اتخاذها كمرجع تقاس عليه دقة أى من الطرق التقريبية.
- ثانياً: تم تطوير البرامج اللازمة لحساب عول التوليد بطريقة التمثيل التتابعى (تقنية مونت كارلو) مع إمكانية تمثيل أزمنة حالات التشغيل بتوزيع أسى وغير أسى. اعطت هذه البرامج نفس نتائج الطرق التحليلية مع اجراء العدد المناسب من التمثيل التتابعي.

وأكتمل هذا الجهد باحتواء الخوارزم المطور (الطرق التحليلية وتقنية مونت كارلو) على إمكانية دراسة:

- أ. تأثير الخروج الجزئي لحدات التوليد.
 - ب. تأثير عشوائية قيم الأحمال.
- ج. تأثير الصيانة الدورية (الخروج المخطط).
 - د. تأثير إضافة التربينات الغازية.

جميع الدراسات التى تمت بالرسالة بالطرق التحليلية وتقنية مونت كارلو اجريت على منظومة IEEE-RTS لحساب عول التوليد حيث تطابقت نتائج التقنيتين.

Contents

Cover P	age	1
Approv	al Sheet	2
Statem	ent	3
Acknow	dedgements	4
Abstrac	t	5
Content	ts	9
Tables I	List	13
Figures	List	14
Abbrev	iations List	18
Chapte	r 1	20-31
Introdu		
1.1	Introduction	20
1.2		25
1.3	Hierarchical Levels of Power System	26
1.4	Reliability Indices	27
1.5	Research Objectives	29
1.6	Outline of the thesis	29
54Chap		2-54
	ting Capacity-Basic Probability Analyt	_
Method		ıcaı
2.1	Introduction	32
2.2	The generation system model	36
	2.2.1 Generating unit unavailability	36
	2.2.2 Capacity Outage Probability Table (COPT).	38
	2.2.3 A Recursive Algorithm for Capacity Model	20
	Building	38
	2.2.4 A Recursive Algorithm for Unit Removal	39
2.3	Loss of load indices	40
2.4	Scheduled outages.	43
2.5	Evaluation methods on period bases	47
2.6		• •
۷.0		50
2.0	Loss of energy indices	50 50
2.0	Loss of energy indices	50
2.7	Loss of energy indices	
2.7	Loss of energy indices	50 52 53
2.7 Chapte	Loss of energy indices	50 52 53
2.7 Chapter Exact A	Loss of energy indices	50 52 53
2.7 Chapter Exact A	Loss of energy indices	50 52 53

Generati	on Adequacy Assessment	
3.2	Limitations of Existing RTS Data	56
3.2	3.2.1 System Input Data	56
	3.2.2 System Reliability Indices	57
3.3	LOLE Analysis of Base Case	59
3.4	Effect of Derated States	60
3.5	Effects of Load Forecast Uncertainty	63
3.6	Effect of Scheduled Maintenance	64
3.7	Effect of Peak Load.	67
3.8	Effect of Additional Generation (Gas Turbine)	68
3.9	Energy Based Indices	70
3.10	Summary of RTS Results	73
3.11	Conclusions	74
Chapte	or A	15-95
	ations of Monte Carlo simulation to	0-90
	ation Capacity Reliability Evaluation	
4.1	Introduction	75
4.2	Types of simulation	76
4.3	Concepts of simulation	77
4.4	Random numbers	78
4.5	Simulation Output	79
4.6	Application to generation capacity reliability	
	evaluation	81
	4.6.1 Introduction	81
	4.6.2 Modelling Concepts	82
	4.6.3 LOLE assessment with nonchronological	00
	load	88
	4.6.4 LOLE assessment with chronological load 4.6.5 Reliability assessment with	89
	4.6.5 Reliability assessment with nonchronological load	91
	4.6.6 Reliability assessment with chronological	91
	load	92
4.7	Conclusion	94
Chapte		5-101
	iting System Adequacy Assessment Using Mo	onte
5.1	Aethod (State Duration Sampling) Introduction	96
5.1	Single-Area Generating System Adequacy	90
الم. ال	Assessment – State Duration Sampling Method	97
	5.2.1 General Steps	97
	5.2.2 Generating Unit Modeling	100
	5	-

Generati	on Adequacy Assessment	
	5.2.3 Stopping Rules	104
	5.2.4 IEEE RTS Studies	106
5.3		118
Chapte		-136
	of generating unit sate Residence time	
	outions on System Reliability	
6.1	Introduction	102
	General Concepts	103
6.3	Generating Normally Distributed Random Variates	
	Using The Approximate Inverse Transform	
	Method.	103
6.4	Generating Other Distribution Random Variates	105
	6.4.a Log-Normal Distributed Random Variate	105
	6.4.b Weibull Distributed Random Variate	106
6.5	System Reliability Indices with Nonexponential	
	Distribution of state Residence time	107
6.6	Conclusions	117
Chapte	-	-140
Summ	ary & Conclusions	
-	ary & Conclusions	- 140 137
Summ 7.1	Summary And Conclusions	137
Summ	Summary And Conclusions	
Summ 7.1 Refere	Summary And Conclusions	137 - 14 5
Summ 7.1	Summary And Conclusions	137
Summ 7.1 Refere Public	Summary And Conclusions nces 141 ation Exact Analytical Evaluation Of The Generating	137 - 14 5
Summ 7.1 Refere Public P.1	Summary And Conclusions The summary And Conc	137 - 145 - 146
Summ 7.1 Refere Public P.1	Summary And Conclusions Summary And Conclusions 141 Ation Exact Analytical Evaluation Of The Generating System Reliability Generating Capacity Adequacy Assessment Using	137 - 145 - 146
Summ 7.1 Refere Public P.1	Summary And Conclusions The summary And Conc	137 - 145 - 146 146
Summ 7.1 Refere Public P.1	Summary And Conclusions Idea Ation Exact Analytical Evaluation Of The Generating System Reliability Generating Capacity Adequacy Assessment Using Sequential Monte Carlo Simulation	137 - 145 - 146 146
Summ 7.1 Refere Public P.1 P.2	Summary And Conclusions Idea Ation Exact Analytical Evaluation Of The Generating System Reliability Generating Capacity Adequacy Assessment Using Sequential Monte Carlo Simulation	137 - 145 - 146 146 146
Summ 7.1 Refere Public P.1 P.2	Summary And Conclusions Summary And Conclusions 141 Ation Exact Analytical Evaluation Of The Generating System Reliability	137 - 145 - 146 146 146
Summ 7.1 Refere Public P.1 P.2 Appen Analys	Summary And Conclusions Inces Idia Ation Exact Analytical Evaluation Of The Generating System Reliability Generating Capacity Adequacy Assessment Using Sequential Monte Carlo Simulation Idix A Is of the IEEE Reliability Test System Introduction IEEE-RTS.	137 -145 -146 146 146
Summ 7.1 Refere Public P.1 P.2 Appen Analys A.1	Summary And Conclusions Inces Italian Exact Analytical Evaluation Of The Generating System Reliability Generating Capacity Adequacy Assessment Using Sequential Monte Carlo Simulation Italian	137 -145 -146 146 146 -151 147
Summ 7.1 Refere Public P.1 P.2 Appen Analys A.1 A.2 A.3	Summary And Conclusions Inces Idia Ation Exact Analytical Evaluation Of The Generating System Reliability Generating Capacity Adequacy Assessment Using Sequential Monte Carlo Simulation Idix A Is of the IEEE Reliability Test System Introduction IEEE-RTS.	137 -145 -146 146 146 -151 147 147

Appen		-169
Monte	Carlo Methods in Reliability Evaluation	
B.1	Introduction	152
B.2	· · · · · · · · · · · · · · · · · · ·	
	Evaluation	152
B.3	Efficiency of Monte Carlo Methods	154
B.4	Convergence Characteristics of Monte Carlo	
	Methods	156
B.5	Random Number Generation	157
B.6	Random Variant Generation	158
	B.6.1 Introduction	158
	B.6.2 Inverse Transform Method	158
	B.6.3 Generating Exponentially Distributed	
	Random Variates Using the Inverse	
	Transform Method	160
B.7	Three Simulation Approaches in Reliability	
	Evaluation	161
	B.7.1 State Sampling Approach	161
	B.7.2 State Duration Sampling Approach	163
	B.7.3 System State Transition Sampling Approach.	166
Appen		-173
Probal	bility Distributions of Random Variable	S
C.1	Probability Distributions of Random Variables	170
C.2	Important Distributions in Reliability Evaluation	172
	C.2.1 Exponential Distribution	172
	C.2.2 Normal Distribution.	172
	C.2.3 Log-Normal Distribution	172
	C.2.4 Weibull Distribution.	173

Tables List

Table	Name	Page
Table 3.1	Using daily peak load	60
Table 3.2	Using hourly load	60
Table 3.3	Generating Unit Derated State Data	62
Table 3.4	Limiting State Probabilities	62
Table 3.5	Effect of Derated States	63
Table 3.6	Data for Load Forecast Uncertainty	63
Table 3.7	Effect of Load Forecast Uncertainty	64
Table 3.8	Maintenance Schedule	65
Table 3.9	Effect of Scheduled Maintenance	66
Table 3.10	Effect of Scheduled Maintenance at different	
	peak load	66
Table 3.11	Effect of Peak Load	68
Table 3.12	Effect of Adding Gas Turbines	69
Table 3.13	LOEE and EIR for RTS	71
Table 3.14	Energy Supplied by Each Unit	
	(Peak Load=2850MW)	72
Table 3.15.a	LOLE Indices	73
Table 3.15.b	Energy Indices for Base System	73
Table 5.1.a	IEEE RTS Reliability Indices (Mean value)	108
Table 5.1.b	IEEE RTS Reliability Indices	
	(Stand. Dev. (σ) value)	108
Table 6.1	IEEE RTS Reliability Indices Considering	
	Nonexponential Distribution Unit State	
	Durations	126
Table A.1	Generating unit reliability data	147
Table A.2	Daily peak load as a percentage of weekly peak	147
Table A.3	Weekly peak load as a percentage of annual peak	147
Table A.4	Hourly peak load as a percentage of daily peak	148
Table A.5	Additional Gas Turbines	149
Table A.6	Data For Load Forecast Uncertainty	149

Figures List

Figure	Name	Page
Fig. 1.1	Conceptual tasks in generating capacity	
	reliability evaluation	23
Fig. 1.2	Conventional system model	24
Fig. 1.3	Subdivision of system reliability	26
Fig. 1.4	Power system functional zones and hierarchical	
	levels (HL)	26
Fig. 2.1 (a)	Two-state model for a base load unit	37
Fig. 2.1 (b)	Three-state model for a base load unit	37
Fig. 2.2	Relationship between load, capacity and reserve	42
Fig. 2.3	Annual load and capacity model	44
Fig. 2.4	Approximate method of including maintenance	45
Fig. 2.5	Capacity reduction due to maintenance	46
Fig. 2.6	Energy curtailment due to a given capacity	
	indicated value	51
Fig. 3.1	Load Models	58
Fig. 3.2	Three-state unit models	60
Fig. 3.3	Effect of Peak Load	67
Fig. 3.4	Effect of Added Generation	69
Fig. 4.1	Highly skewed probability density function	80
Fig. 4.2	Two-state model of generating unit	83
Fig. 4.3	Typical up/down sequence for two identical	
	units	84
Fig. 4.4	Three-state unit models	85
Fig. 4.5	Typical sequence of unit with derated state	86
Fig. 4.6	Load Model	87
Fig. 4.7	Typical frequency histogram/probability	
	distribution	91
Fig. 4.8	Typical up/down sequence showing energy not	
	supplied	93
Fig. 5.1	Available capacity models of each unit and the	
	system	98
Fig. 5.2	Superimposition of the system available	
	capacity model on the load model	99
Fig. 5.3	Two-state model for a base load unit	100
Fig. 5.4	Up-down cycle of a two-state unit	101
Fig. 5.5	Three-state model for a base load unit	102
Fig. 5.6	Operating cycle of a three-state unit	103

Figure	Name	
Fig. 5.7	Flow chart of state duration sampling technique	
	as applied to generating system reliability	
	assessment	105
Fig. 5.8	System available capacity model in a typical	
	sample year	107
Fig. 5.9	Annual hourly load model for the IEEE RTS	107
Fig. 5.10	System available margin model in a typical	
	sample year	107
Fig. 5.11	LOLE vs. the number of sample years	109
Fig. 5.12	LOEE vs. the number of sample years	110
Fig. 5.13	LOLF vs. the number of sample years	110
Fig. 5.14	Frequency Histogram of LOLE	110
Fig. 5.15.a	Frequency Histogram LOEE	111
Fig. 5.15.b	Density distribution of the LOEE	111
Fig. 5.16	Frequency Histogram of LOLF	111
Fig. 5.17	LOLE vs. the number of sample years	112
Fig. 5.18	LOEE vs. the number of sample years	112
Fig. 5.19	LOLF vs. the number of sample years	112
Fig. 5.20	Frequency Histogram of LOLE	113
Fig. 5.21	Frequency Histogram LOEE	113
Fig. 5.22	Frequency Histogram of LOLF	113
Fig. 5.23	LOLE vs. the number of sample years	114
Fig. 5.24	LOEE vs. the number of sample years	114
Fig. 5.25	LOLF vs. the number of sample years	114
Fig. 5.26	Frequency Histogram of LOLE	115
Fig. 5.27	Frequency Histogram LOEE	115
Fig. 5.28	Frequency Histogram of LOLF	115
Fig. 5.29	LOLE vs. the number of sample years	116
Fig. 5.30	LOEE vs. the number of sample years	116
Fig. 5.31	LOLF vs. the number of sample years	116
Fig. 5.32	Frequency Histogram of LOLE	117
Fig. 5.33	Frequency Histogram LOEE	117
Fig. 5.34	Frequency Histogram of LOLF	117
Fig. 6.1	Area under normal density function, $Q(z)$	122
Fig. 6.2	LOLE vs. the number of sample years Webile	
	(MTTF,1.07) & Exponential(MTTR)	127
Fig. 6.3	3 LOLE vs. the number of sample years	
-	Exponential (MTTF) & Webile (MTTR,1.00)	127