EFFECT OF COMPLETE MANDIBULAR OVERDENTURE ABUTMENT DESIGNS ON DENTURE SUPPORTING STRUCTURES

Thesis

Submitted to the Faculty of Dentistry in partial fulfillment of the Requirements for Doctor Degree In Prosthodontics

Amani Ramadan Ali Moussa

B.D.S, M.D.S Cairo University

Faculty of Dentistry Ain-Shams University

SUPERVISORS

Prof. Dr. Hany Ibrahim Eid

Professor of Prosthodontics and Dean of Faculty of Dentistry,

Ain Shams University

Prof. Dr. Effat Ahmed Abbas

Head of Research Department of Oral and Dental Medicine National Research Center

CO-SUPERVISORS

Dr. Amal Hussein Mubarak

Associate Professor of Prosthodontics Faculty of Dentistry, Ain Shams University

Dr. Mostafa Ibrahim Mostafa

Associate Professor of Oral Radiology
National Research Center

تأثير التصميمات المختلفة لدعامة الأطقم الفوقية الشفلية على البنية الداعمة للاطقم

رسالة مقدمة لكلية طب الأسنان كجزء من مقومات الحصول على درجة الدكتوراه في الاستعاضة الصناعية للأسنان

مقدمة من الطبيبة أماني رمضان علي موسى

بكالوريوس طب الأسنان – جامعة القاهرة ماجستير الاستعاضة الصناعية – جامعة القاهرة

> كلية طب الفم والأسنان جامعة عين شمس

المشرفون أ.د. هاني إبراهيم عيد

أستاذ الاستعاضة الصناعية وعميد كلية طب الأسنان جامعة عين شمس

أ.د. عفت أحمد عباس

أستاذ ورئيس قسم بحوث طب الفم والأسنان المركز القومي للبحوث

أ.د. أمل حسين مبارك

أستاذ مساعد قسم الاستعاضة الصناعية عين شمس

أ.د. مصطفى إبراهيم مصطفى

أستاذ مساعد بالمركز القومي للبحوث

CONTENTS

	Page
INTRODUCTION	١
REVIEW OF LITERATURE	۲
• Definition	۲
• Treatment Goals with Overdentures	٣
• Value of Preserving Teeth or Roots	٣
• Drawbacks of Overdentures	٥
• Classification of Overdentures	٦
I .Implant supported Overdentures	٦
II. Tooth supported Overdentures	٨
A. According to time of insertion	٨
B. According to stability	٩
C. According to number of remaining teeth	٩
D. According to Retention	١.
E. According to Abutment preparations	11
Patient and Abutments Selection	۲.
Overdenture abutment tooth loss and preventive measures.	70
• Methods of Evaluation of Overdenture Abutments	۲٩
¹ . Clinical Evaluation	۲٩
T.Radiographic Evaluation	٣٣
AIM OF THE STUDY	٤٩
MATERIALS AND METHOD	٥,
RESULTS	٧٦
DISCUSSIONS	١٠٦
SUMMARY	175
CONCLUSIONS	١٢٦
REFERENCES	١٢٧
ARABIC SUMMARY	

List of Tables

		Page
Fig. (\):	Effects of group on gingival crevicular fluid	٧٨
Fig. (۲):	Effect of time on gingival crevicular fluid	۸.
Fig. ($^{\circ}$):	Effects of group on pocket depth measurements	Al
Fig. (٤):	Effects of time on pocket depth in group I and II	٨٢
Fig. (°):	Effects of group and time interval on hone height	٨٤
	of the A& three groups during the follow-up	
	period.	
Fig. (٦):	Effect of time on bone height in group I	$\lambda\lambda$
Fig. (\forall):	Effect of time on bone height in group II	٨٩
Fig. (^):	Effect of time on bone height in group III	٩.
Fig. (٩):	Effect of site on bone height in group I	97
Fig. (\ •):	Effect of site on bone height in group II	98
Fig. (\\):	Effect of site on bone height in group III	9 £
Fig. (\ \ \ \):	Effects of group and time interval on bone density	
	(gray level) for the three studied groups during the	
	follow-up period,	90
Fig. (۱۳)	Effect of time on bone density in group I	99
Fig. (\\\ \xi\)	Effect of time on bone density in group II	١
Fig. (10)	Effect of time on bone density in group III	1.7
Fig. (17)	Effect of site on bone density in group I	1.4
Fig. (\\)	Effect of site on bone density in group II	1.5
Fig. (\ \ \ \)	Effect of site on bone density in group III	1.0

List of Figures

		Page
Fig. (\):	Mandibular canines	٤ ٥
Fig. (۲):	Medium short dome shaped preparation	0 8
Fig. ($^{\circ}$):	Unicast Plastic impression post set	00
Fig. (٤):	(a) preparatory drill (b) calibrating drill	٥٧
Fig. (°):	Plastic impression post	01
Fig. (٦):	Impression and picking up of plastic post	09
Fig. (\forall):	Cast metal coping assembly	09
Fig. (^):	Acrylic at the gingival margins	
Fig. (٩):	Short dome shaped preparation	٥٩
Fig. (\'\'):	Plastic impression post	٦,
Fig. (\\):	Cast metal coping assembly	٦.
Fig. (\ \ \ '):	Occlusal film showing adequate buccal cortical plate of bone .	77
Fig. (۱۳)	A beveled crevicular incision	77
Fig. (\\\ \xi\)	Surgical flap	77
Fig. (10)	a-Amputation of the crown b-Amputated crown	٦٣
Fig. (17)	Crown reduced 7mm below the crestal bone	٦٣
Fig. (\\)	a)surgicalflap b)Sutured mucosa c) Sutured mucosa	7 £
Fig. (\ \ \)	Measurement of gingival crevicular fluid using	٦٧
	filter paper	

		Page
Fig. (۱۹):	Software program for measuring the area stained by ninhydrin	٦٧
Fig. (۲۰):	Measuring the pocket depth	77
Fig. (۲۱):	Radiographic stent	٧.
Fig. (۲۲):	Step wedge	٧.
Fig. (۲۳):	Periapical radiograph with step wedge on the film a) abutment with coping b) submerged root	٧.
Fig. (٢٤):	Bone height measurements using Digora software c) Proximal to the abutment d) 1,0 cm distal to the abutment	٧٢
Fig. (۲°):	Bone height measurements using Digora software a. Proximal to the submerged tooth b. 1,0 cm distal to the submerged tooth	٧٢
Fig. (۲٦):	Optical bone density measurements using Digora software a. Proximal to the abutment b. 1,0 cm distal to the abutment	٧٥
Fig. (۲۷):	Optical bone density measurements using Digora software c. Proximal to the submerged tooth d. 1,0 cm distal to the submerged tooth	٧٥
Fig. (۲۸):	Changes in gingival crevicular fluid, Effect of group	٧٩
Fig. (۲۹):	Effect of time on gingival crevicular fluid	۸.
Fig. (r .):	Changes in pocket depth measurements, Effect of group	٨١
Fig. (٣١)	Changes in pocket depth measurements, Effect of time	۸۳
Fig. (* ۲)	Changes in bone height during the follow up periods Effect of groups	٨٥
Fig. (٣٣)	Changes in bone height during the follow up	٨٦
	periods Proximal to abutments in the three groups	

		Page
Fig. (٣٤)	Changes in bone height during the follow up	$\wedge \vee$
	periods 1,0 cm distal to abutments in the three	
	groups.	
Fig. ($^{\circ}$)	Changes in bone height group I: Effect of time	$\lambda\lambda$
Fig. (٣٦)	Changes in bone height group H: Effect of time	٨٩
Fig. (**\forall)	Changes in bone height in group HI: Effect of time	9 7
Fig. (TA)	Changes in bone height in group 1: Effect of site	9 7
Fig. (٣٩)	Changes in bone height in group II: Effect of site	98
Fig. (٤٠)	Changes in bone height in group III: effect of site	9 £
Fig. (٤)	Changes in optical bone density (Gray level) during	97
	the Follow up periods.	
Fig. (٤٢)	Changes in optical bone density during the follow up	9 ٧
	Periods in the three groups proximal to abutments (the	
	average of the mesial and distal).	
Fig. (٤٣)	Changes in optical bone density during the follow up	9 1
	periods in the three groups at $^{\lor,\circ}$ cm distal	
Fig. (5 5)	Changes in optical bone density in group I	99
	Effect of time	
Fig. (٤0)	Changes in optical bone density in group II Effect of time	1.1
Fig. (٤٦)	Changes in optical bone density in group III Effect of time	1.7
Fig. (٤٧)	Changes in optical bone density: Effect of site in Group	1.4
Fig. (٤٨)	Changes in optical bone density: Effect of site in Group II	١٠٤
Fig. (٤٩)	Changes in optical bone density: Effect of site in Group I	1.0

ACKNOWLEDGEMENT

I spent so much time uselessly to find one single word that could express my deep thanks and gratitude for the merciful *Allah* who enabled me to accomplish this study, may His blessings accompany us in every step of our lives.

I am also very lucky and very proud to work under the supervision of one of the most kind and helpful professors, *Prof. Dr. Hany Ibrahim Eid*, Professor of Prosthodontics and Dean of Faculty of Dentistry, Ain Shams University. Thank you, *Dr. Hany* for your valuable advice, precious suggestions and unforgettable concern. Thank you for being my professor.

Also, this work was impossible without the continuous support and encouragement of the very special professor of mine; *Prof. Dr. Effat Ahmed Abbas*, Head of Research Department of Oral and Dental Medicine, National Research Center. She had been like a mother to me.

My gratitude is extended to *Dr. Amal Hussein Mubarak*, Associate Professor of Prosthodontics, Faculty of Dentistry, Ain Shams University for her patience, meticulous supervision, Constructive comments, continuous help.

I am deeply indebted to *Dr. Mostafa Ibrahim Mostafa*, Associate Professor of Oral Radiology, National Research Center. In spite of being very busy, he never denied me the time and effort needed to accomplish this study.

I could never deny or forget a very special, extraordinarily, kind and respectful person: *Dr. Wael Abo Zeid*, Associate Professor of Biological Anthropology. Thank you for your help.

Introduction

Despite the recent development in dental implantology the conservative approach to root preservation is still valid, especially in complex occlusal situation (such as sever attrition and bruxism) or when implant retrained or supported prosthesis is not feasible for economic or anatomic reasons.

Preservation of roots of teeth that are destroyed by caries or compromised by periodontal disease to support an overdenture is preferred alternative to extraction of these teeth and construction of complete denture.

Complete denture wearer suffer from functional problems because of dependence of the prosthesis on mucoperiosteal support only, whereas over denture drives additional support and retention from the retained root. The retained roots were nominated as natural or physiological implant. These physiologic implants with their intact properioceptive feed back mechanisms offer best solution to function, retention, support, stability and also training effect for complete dentures that may be necessary by preparing the neural path way for appropriate patterns.

However, the usefulness of overdentures has been limited by susceptibility of abutment teeth to caries and progressive periodontal disease.

In an attempt to control caries and periodontal disease various abutment designs have been suggested, hence it was imperative to study the effect of different overdenture abutments on denture supporting structures.

Review of Literature

Complete overdenture is a removable prosthesis that overlies the retained teeth, tooth root or dental implant. This treatment modality is not a new concept. Dentists have successfully used existing tooth structures or retained roots to support complete denture for more than a century (*Burns*, $r \cdot \cdot t$).

Miller (140A); re-introduced the concept of using teeth to stabilize complete dentures by using vital teeth with coping thimble arrangement without necessitating root canal therapy.

Morrow et al. (1979), suggested that teeth should be reduced to a few millimeters above the free gingival margin with elective root canal therapy and then they covered with gold thimbles.

Today with the stress on preventive measures in prosthodontics the use of overdentures has increased to the point where it is now a feasible alternative to most treatment plan outline in which the construction of a prosthesis for patients with few remaining teeth which were previously considered inadequate to support fixed or removable partial dentures (Winkler, 1944 and Budtz-Jorgenson, 1999).

The overdenture approach has also other applications beside the obvious replacement of complete or partial denture; it is used as an effective prosthodontic means for correcting disparities in dentition, between two dental arches, for treating occlusal disharmony and in patients with congenital and acquired defect (MacEntee, 1914; Winkler 1914; Lunger & Langer, 1994; Mericske-stern, 1994; and Zarb et al., 1994).

Treatment Goals with Overdentures

The goals of overdenture therapy are to preserve alveolar bone, improve function and comfort by maintaining few roots or placing implants to prevent abuse of soft tissue of the residual ridge (*Mericske et al.*, 1997; *Preiskel*, 1997; *Burns*, 7··· 2 and Misch, 7··· 2), providing better load transmission, better masticatory function and improving stability (*Mericske-Stern*, 1992). The retention of prosthesis can also be secured by using precision attachment. These advantages are reflected on psychological condition of the patient (*Preiskel*, 1993, and Burns, 7··· 2)

Value of Preserving Teeth or Roots

Extraction of the last remaining teeth and their replacement with complete dentures has many advert consequences. The patient has to adapt to new situations with respect to speech, chewing and swallowing. The patient also has to accept edentulousness, which may lead to psychological problem and social isolation (Van Waas, 1990 a,b,c and Kalk et al., 1990). Furthermore, extraction of the teeth leads to reduction of alveolar ridge (Klemetti, 1997; Van Waas et al., 1990 and Atwood, 1000) which causes changes in denture base adaptation, vertical

dimension of the occlusion and occlusal contact (*Tallgren*, 1977; *Van Waas*, 1997 and *Fenton*, 1994) and subsequent need for prosthodontic care (*Winkler*, 1944 and *Burns*, 7005).

On the other hand, retention of teeth or roots in the alveolar ridge aids to preserve bone around and in between these structures. Bone maintenance is the most significant advantages of overdentures because bone maintenance can improve retention and stability of the prosthesis (*Thayer& Caputo et al*, 1919). Moreover, sensory feed back of periodontal ligaments of retained teeth is maintained and masticatory performance is enhanced (*Rissin et al*, 1914; *Nagasawa*, 1919; *Fenton*, 1914; and *Budtz-Jorgensen* 1919).

Tooth supported overdentures also minimize down and forward settling of denture which otherwise occurs with alveolar bone resorption. The overdenture occlusion is maintained rather than shifting forward to simulate the appearance of an angle class III malocclusion (*Fenton*, 1994).

Tooth-borne overdenture the patients are not rendered completely edentulous so psychologically the patients may perceive the preservation of few teeth as an important factor in maintaining a more positive self-image (Warren & caputo, 1940; Rissin et al, 1944 and Preiskel, 1949, 1997).

Drawbacks of Overdentures:

There are few drawbacks provided that overdenture, are properly designed and constructed. These are:

- 1- Adequate inter-arch space is required to accommodate overdenture prosthesis and for the underlying teeth or tooth roots (Robbins, 1914; Basker et al., 1914 (a) and Winkler, 1914).
- Y- Compared with conventional denture, overdenture may be bulkier, although the base is trimmed very thin around abutment teeth making overdenture base more susceptible to fractures (*Preiskel*, 1997).
- Prominent osseous tissue undercuts in the area of abutment teeth, especially in anterior region of the mandible, may cause difficulties developing proper denture extensions. In this case the denture base is likely to be under extended, negatively influencing prosthesis retention and esthetic outcome (*Preiskel*, 1979, 1997 and Burns, 1999).
- E- Contact between denture base and abutment either by design or because of tooth eruption, can produce a fulcrum in denture base where contact occur. Movement of the denture base around this fulcrum can interfere with denture retention and stability or contacts may create fatigue related maintenance problems that are generally unique to overdentures. For this reason denture base contact with abutment teeth should be avoided or should occur only under condition of heavy occlusal loading forces (*Burns*, Y···f).