

ABSTRACT of M.SC. THESIS

Title : Bond Behaviour of High Strength and

Corrosive Resistant Steel Reinforcement

Submitted

Supervisors

by

: Judy Mohamed Ibrahim Soliman

: Distinguished Prof. Dr. Sami Rizkalla

Prof. Dr. Aly Sherif Abd El-Fayad

Dr. Tarek Kamal Hassan

ABSTRACT

Bond between the concrete and the reinforcing steel is the main factor affecting the behaviour of the reinforced concrete structures. Advances in material science have led to the production of High Strength reinforcing bars that are characterised by their higher strength and corrosion resistance compared to the conventional steel. Using these bars allows the reduction of the reinforcement ratio hence leads to a more economical design and expand the service life of concrete structures.

The objective of this research is to evaluate the bond behaviour of High Strength reinforcing bars for concrete structures and to study the effect of different parameters believed to affect

the bond characteristics. Nine reinforced concrete spliced beams were constructed using 17 mm and 19 mm bar diameters, having different development lengths and levels of confinements. The beams were tested using Four Point bending setup to provide constant moment region over the splice zone. Test results indicate that using a splice length of $r \cdot \phi$, stresses up to $A \circ \cdot$ MPa and $T \circ \cdot$ MPa can be developed for bar sizes \rightarrow mm. and \quad mm. MMFX bar without confinement, respectively. Using the minimum spacing for $\cdot \cdot$ mm. diameter stirrups for $r \cdot \phi$ splice length, the ultimate tensile strength and the yield strength can be developed for the 17 mm. and 19 mm. MMFX bar, respectively. Research findings indicate that published equations of the ACI 5.4 Committee report $(\Upsilon \cdot \cdot \Upsilon)$ can be safely used to predict the splice strength of MMFX steel reinforcement with a reduction factor of ., 97. Splice strength can be also very conservatively predicted by the Egyptian Code (Y···Y). Using test results of this research combined with test results by researcher at N.C. State University, a rational model to estimate the stresses in spliced MMFX bars was developed which can be adequately used to predict the splice strength of MMFX steel reinforcement.

INFORMATION ABOUT THE RESEARCHER

Name : Judy Mohamed Ibrahim Soliman

Date of Birth : February. o, 1945

Place of Birth : Cairo, Egypt

Qualifications: B. Sc. Degree in Civil Engineering (Structural

Eng.) Faculty of Engineering, Ain Shams

University-Hon. (۲۰۰۵)

Present Job : Teaching Assistant in Structural Engineering

Judy Soliman

Department, Faculty of Engineering, Ain

Shams University

Signature :

EXAMINING COMMITTEE

Name and Affiliation

Signature

Prof. Dr. Aly Abd El-Rahmen Youssef

Chairman of Cairo University
Professor of concrete structures
Cairo University, Cairo, Egypt

Prof. Dr. Abd Allah Abd El-Moteleb Abo-Zeid

Professor of concrete structures
Ain Shams University, Cairo, Egypt

Prof. Dr. Aly Sherif Abd El-Fayad

Professor of concrete structures
Ain Shams University, Cairo, Egypt

STATEMENT

This thesis is submitted to the Engineering Faculty of Ain Shams University for the degree of Master of Science in Civil Engineering (Structural Engineering).

The work included in this thesis has been carried out by the author in the department of Structural Engineering, Ain Shams University, from October ۲۰۰۰ to December ۲۰۰۷.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date YY/YY/Y···Y

Signature

Name

JUDY MOHAMED IBRAHIM SOLIMAN

Judy Soliman

ACKNOWLEDGEMENT

First I would like to start by thanking God for his many blessings throughout my life and through whom everything is possible.

Next I would like to thank North Carolina State University for supplying the MMFX steel and for their generous financial support of this research.

It is with sincere gratitude that I thank my advisor, Dr. Sami Rizkalla for his time, help, guidance, advice and support. It is a true pleasure to work with such a unique professor by all means. I would also like to thank Dr. Aly Sherif for being such an outstanding teacher, I would like to thank him for his continues advices and support and for making this thesis appear in such a period of time. Thanks are extended to Dr. Tarek Hassan, for his guidance throughout my studies and his generous and continuous support. It is such a great honor to work with such an exceptional man, who is willing to help, support and guide his students.

I am greatly indebt to Dr. Amr EL-Deeb for his sincere help and guidance with all aspects of material work and test set-up solid equipments, without him this experimental work would never had been as precise as it has been.

Thanks are extended to my fellow colleges at Ain Shams University for their help and friendship.

I really want to thank the entire staff at the Structural Laboratory of Ain Shams University, especially Mr. Mahmoud Badr for his help with all aspects of this project. His assistance was invaluable in dealing with the details of laboratory testing. Mrs Magda Hanafi Mahmoud and Mrs Wallaa Khairy Ahmed can not be thanked enough for their constant presence and help with the intricacies of the administrative requirements.

I am truly thankful to my cousin, Amr Hosny for his sincere help in providing the necessary data for the analytical model presented in this thesis. Amr's extensive knowledge was a tremendous asset to this analysis. It was truly a joy to work with someone with such compassion, commitment and professional skills.

I would like to thank all of my family and friends for their support, guidance and encouragement throughout my life and studies.

I would like to extend a heartfelt thank to my dear and beloving husband Mr. Karim El Mestekawy, for his unconditional love, patience, understanding and encouragement. He just made things so much easier for me to accomplish this work.

Finally, I would like to express my appreciation to my unique parents for their love, guidance, help and support.

DEDICATION

To my parents

Who are the reason why I am everything I am

To my husband For whom I am trying to be the best I can Thank you.

TABLE OF CONTENTS

List of Tab	lesXV
List of Figu	iresXVI
Chapter \ .	
Introduction	n ۱
١,١	Background
۲, ۱	Objective
١,٣	Scope ٤
Chapter ۲.	٦
Backgroun	d ^٦
Ove	view ^٦
۲,۱	MMFX Steel Reinforcement
۲,۲	Introduction
۲,۳	Bond Behavior
۲,٤	Factors Affecting Bond Characteristics
۲	۶٤٫١ Structural Characteristics١٣
	۲٫٤٫١٫١ Concrete Cover and Bar Spacing ١٤
	۲٫٤٫١٫۲ Bonded Length of The Bar۱۹
	۲,٤,١,٣ The Degree of Transverse Reinforcement ۲۱

	•	۲٫٤٫١٫٤ Bar Casting Position	۲۸
	۲,	٤,۲ Bar Properties	۲٩
	•	۲٫٤٫۲٫۱ Bar Size	۲٩
		۲,٤,۲,۲ Bar Geometry	٣.
		۲٫٤٫۲٫۳ Steel Strength and Yield Strength	٣٢
		۲٫٤٫۲٫٤ Bar Surface Condition	٣٣
	۲,	٤,٣ Concrete Properties	٣٤
		۲٫٤٫۳٫۱ Concrete Compressive Strength	٣٤
		۲٫٤٫۳٫۲ Aggregate Type and Quantity	٣٦
	۲,٥	Evaluation of Bond Forces	٣٧
Chap	ter ۳		٤٩
Expe	rimenta	al Program	٤٩
	٣,١	Introduction	٤٩
	٣,٢	Test Specimens	٤٩
	٣,٣	Construction of The Specimens	٥٢
	٣, ٤	Material Properties	00
	٣,	٤,١ Reinforcing Steel	00
	٣,	٤,٢ Concrete	٥٧
	٣,٥	Test Setup	٥٩
	٣,٦	Instrumentation	٦,
	٣,٧	Test Procedure	٦٢

Chap	ter ٤						٦٢
Test	Results	S					٣٢
	٤,١	Overview					٣٣
	٤,٢	Crack Patte	rn				٦٥
	٤,٣	Load-Deflec	tion Beh	avioui	·		۸۲
	٤,٤	Mode of Fai	lure				٧٢
	٤,٥	Stresses in	The Splic	ced Ba	ars		
Chap	oter °						۸۱
Analy	Analysis of Test Results						
	Over	/iew					۸۱
	Teste	d Beams Pro	perties				۸۲
	0,1	Predictions	Accordin	g to P	revious F	Resea	rchers ^٣
	٥,),\ Orangun	, Jirsa, ar	nd Bre	en (۱۹۷۷	´)	٨٣
	٥,	۱٫۲ Darwin e	t al. (۱۹۹	¹a)			۸٦
	٥,	۱٫۳ Zuo and	Darwin (`	۲۰۰۰)			۸۸
	٥,	ب،٤ Esfahani	and Ran	gan			٩٠
	0,7	ACI Commit	tee ٤٠٨				٩٢
	0,4	Egyptian co	de (۲۰۰۷))			٩٤
	0, £	Proposed	Model	by	NCSU	for	Unconfined
		Members					99

0,0	Influence	of	Confinement	Level	on	The	Splice
	Strength						١٠٢
Chapter 7							۱۱۰
Summary a	nd Conclusi	ons					۱۱۰
٦,١	Overview.						۱۱۰
٦,٢	Conclusion	ns					۱۱۱
٦,٣	Recomme	nda	tions for Furthe	er Rese	arch		11£
References							110
Notations							171

LIST OF TABLES

Table ٣-١: Test beams
Table ٤-١: Splice zone details of the tested beams ٦٤
Table ٤-٢: Measured loads and deflections at failure ٧٢
Table ٤-٣: Measured strains and the corresponding stresses in the
spliced bars
Table o-1: Test specimens' properties
Table o-Y: Stresses predicted by Orangun, Jirsa, and Breen (1977)
Λο
Table o-r: Stresses predicted by Darwin et al (۱۹۹٦a)
Table ٥-٤: Stresses predicted by Zuo and Darwin (٢٠٠٠) ٨٩
Table o-o: Stresses predicted by Esfahani and Rangan (۱۹۹۸a,b)
91
Table ٥-٦: Stresses predicted by ACI ٤٠٨R-٠٣
Table o-Y: Stresses predicted by the Egyptian Code (Y Y) 97
Table o-A: Summary of analytical predictions using various models
۸.۶
Table o-9: Predicted stresses according to equation proposed by
NCSU
Table o-1: Calculated stresses in transverse reinforcement
Table o-11: Calculated stresses using the proposed stress level in
stirrups of ۲۷0 MPa

LIST OF FIGURES

Figure ۲-1: Bond force transfer mechanisms (ACI ٤٠٨R-٠٣) ٩
Figure Y-Y: Side view of a deformed bar with deformation face
angle $lpha$
Figure ۲-۳: End view showing formation of splitting cracks parallel
to the bar (ACI ٤٠٨R-٠٣)
Figure ۲-4: End view of a member showing splitting cracks
between bars and through the concrete cover (ACI $\xi \cdot \Lambda R - \iota^{r}$)) ι^{r}
Figure ۲-0: Side view of member showing shear crack and/or local
concrete crushing due to bar pullout (ACI ٤٠٨R-٠٣)
Figure ۲-٦: Forces between deformed bar and concrete) ٤
Figure ۲-۷: Failure pattern of anchored single bars
Figure ۲-۸: Failure pattern of anchored spliced bars (Orangun et
al., ۱۹۷۷)
Figure ۲-9: Stresses on concrete exerted by deformed reinforcing
bars
Figure ۲-1: Assumed bond stress distribution over splice length.
Figure ۲-۱۱: Transverse reinforcement: Definitions ۲۳
Figure ۲-۱۲: Assumed crack planes for calculation of stirrup forces.
Figure ٣-١: Typical elevation of test beams
Figure $^{r-1}$: Typical Cross-section of test beams at the splice zone.
Figure $^{r-r}$: Steel cages inside the treated wooden forms $^{\circ r}$
Figure ٣-٤: Location of the Steel Chairs
Figure ٣-٥: Steel chair to maintain the side cover at ٤٠ mm ٥٣
Figure $^{\psi}$ -1: Casting of the concrete in the forms

Figure $^{\mbox{\tiny r-$}\mbox{\tiny r}}$: Stress-Strain relationship $^{\mbox{\tiny r-$}\mbox{\tiny r}}$
Figure ۳-۸: The Hydraulic Compression Machine of ۲۰۰۰kN ۵۸
Figure ۳-۹: Hognestad stress-strain relationship and sectional
analysis of test beams
Figure ٣-١٠: Actual test setup
Figure ٣-١١: Location of the Strain Gages
Figure ٣-١٢: Location of the LVDTs
Figure ٤-١: Flexure Crack Behaviour for B1, B7 and B7
Figure ٤-٢: Flexure Crack Behaviour for B٤, Bo and B٦ ٦٦
Figure ٤-٣: Flexure Crack Behaviour for BY, BA and B9 ٦٦
Figure ٤-٤: Initiation of the splitting cracks for BY
Figure ٤-٥: Load-Deflection Behaviour of Group \
Figure ٤-٦: Load-Deflection Behaviour of Group ٢
Figure ٤-٧: Load-Deflection Behaviour of Group ٣ ٧٠
Figure ٤-٨: Splitting failure of B1
Figure ٤-٩: Splitting Failure of B٤
Figure ٤-١٠: Splitting Failure of B ^V
Figure ٤-١١: Splitting failure of B٢
Figure ٤-١٢: Splitting failure of B^
Figure ٤-١٣: Splitting failure of B٣
Figure ٤-١٤: Splitting failure of B٩
Figure ٤-١٥: Load-Strain Behavior of B1 and B7
Figure ٤-١٦: Load-Strain behavior of B۲ and B٨
Figure ٤-١٧: Load-Strain behavior of B ^r and B ^q
Figure o-1: Typical test setup at N.C. State University (Hosny,
99
Figure o-1: Typical splitting failure for beam reinforced with To mm.
diameter MMFX rebars [splice length= \ \ \ \ mm. (\ \ d_b)] (Hosny,
Y • • • V)