USE OF SOME BIO-FEED ADDITIVES TO IMPROVE GROWTH AND REPRODUCTIVE PERFORMANCE IN BUFFALO HEIFERS

By

SAFFA EZZAT HASHEM MOHAMED ARAFA

B.Sc. Agric. Sc. (Animal Production), Ain Shams University, 1999

A thesis submitted in partial fulfillment of the requirements for the degree of

in
Agricultural Science
(Animal Physiology)

Department of Animal Production Faculty of Agriculture Ain Shams University

2009

Approval Sheet

USE OF SOME BIO-FEED ADDITIVES TO IMPROVE GROWTH AND REPRODUCTIVE PERFORMANCE IN BUFFALO HEIFERS

By

SAFFA EZZAT HASHEM MOHAMED ARAFA

B.Sc. Agric. Sc. (Animal Production), Ain Shams University, 1999

This thesis for M.Sc. degree has been approved by:

Drof Dr Ibrohim Good El Chamas

Date of Examination: / / 2008

PIOI.	DI. IDI AHIII SAAU EI-SHAIHAA
	Prof. of Animal Physiology, Faculty of Agriculture, Kafr Elshiekh
	University
Prof.	Dr. Farouk Abdalla Khalil
	Prof. Emeritus of Animal Physiology, Faculty of Agriculture, Ain
	Shams University
Prof.	Dr. Sabry Hemida Hassanin
	Prof. of Animal Physiology, Faculty of Agriculture, Ain Shams University
Prof.	Dr. Essmat Bakri Abdalla
	Prof. of Animal Physiology, Faculty of Agriculture, Ain Shams University

USE OF SOME BIO-FEED ADDITIVES TO IMPROVE GROWTH AND REPRODUCTIVE PERFORMANCE IN BUFFALO HEIFERS

By

SAFFA EZZAT HASHEM MOHAMED ARAFA

B.Sc. Agric. Sc. (Animal Production), Ain Shams University, 1999

Under the supervision of:

Prof. Dr. Essmat Bakri Abdalla

Prof. of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Sabry Hemida Hassanin

Prof. of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Mahmoud Mohamed Ali Khorshed

Associate Prof. of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

ACKNOWLEDGEMENT

Special acknowledgement and sincere appreciation to Dr. Essmat B. Abdalla for suggesting the subject of this study, close supervision, constructive criticism and invaluable revision of the manuscript. His constant encouragement, patience and valuable advice throughout the course of this dissertation made this work possible.

Great appreciation and thanks to Dr. Sabry H. Hassanin and Dr. Mahmoud M. Khorshed for their guidance, interest, kind supervision and encouragement during the whole period of the experimental work.

The author wishes to express her deep gratitude to Dr. Farouk A. Khalil, Dr. Nasr E. El-Bordeny and Dr. Gouda F. Gouda for their great help during writing the manuscript and kind support during the statistical analysis.

Special thanks and full appreciation are due to Dr. Omar Y. Abdalla for his continuous support, valuable advice and encouragement.

Acknowledgements are due to the staff members of the Animal Production Department and the workers in the farm for their continuous help and encouragement.

I am especially grateful to my parents, brothers, sisters, husband and our lovely boys for making everything worthwhile.

ABSTRACT

Saffa Ezzat Hashem. Use of some Bio-Feed Additives to Improve Growth and Reproductive Performance in Bbuffalo Heifers. Unpublished M. Sc.Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2009.

Nineteen buffalo heifers were divided into four groups, the first group (G1) included five animals with average body weight 200-250 kg and served as control group, the second group (G2) included four animals with average body weight 200-250 kg, the third group (G3) included five animals with average body weight 250-300 kg, and the fourth group (G4) included five animals with average body weight 300-350 kg. The G2, G3 and G4 received the feeds according to the farm regime (G1) plus feed additive Tri-Mic (microbial flora) as 15 g/h/d for one month. Feed intake as dry matter (DM), total digestible nutrients (TDN), crude protein (CP) and digestible crude protein (DCP) were significantly (P<0.05) increased for G3 and G4 as compared to G1 and G2 during prepuberty and post-puberty periods, due to increased body weight but not to feed additive since G1 and G2 feed intakes were not significantly different.

The average daily gain was significantly (P<0.05) higher in the treated groups than in the control group during pre- and post-puberty periods. The feed efficiency for different nutrients was higher (P<0.05) in G3 as compared to the other groups during pre-puberty period. However, it was slightly lower in G3 and G4 than the control group during the post-puberty period. The hepatic transaminases concentrations were higher (P<0.05) in G2 and

lower in G4 as compared to the control group during pre-puberty period. Moreover, urea and creatinine levels were lower (P<0.05) in G2 and G3 as compared to the control group during pre- and post-puberty periods.

Age at puberty was lower in G3 and G4 than in G1 and G2. The mean length of days open was 96, 70 and 94 days for G2, G3 and G4, respectively. While number of services/conception averaged 1, 1.75 and 1.25 for the respective groups. Average calf birth weight was proportional to the dam weight at calving.

Average daily milk yield was lower (P<0.05) in G3 than in G2 and G4. Moreover, the percentages of total protein, lactose, total solids, solids non-fat and ash were significantly (P<0.05) different among groups. However, insignificant differences were noticed in yields of different milk contents among groups.

Age and weight at puberty and first conception in buffalo heifers were found to be significantly correlated with some body measurements. In summary, body weight of buffalo heifers may considerably affect the physiological response of animals to the Tri-Mic feed supplement.

Key words: Tri-Mic, Nutrients digestibility, Growth performance, Puberty, Milk yield, Buffalo.

CONTENTS

LIST OF TABLES LIST OF APPENDIX TABLES LIST OF ABBREVIATIONS	iv v
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	3
2-1 Direct-fed microbials and their mode of action	3
2-2 Effect of probiotics on feed intake and feed efficiency	5
2-3 Effect of probiotics on feed digestibility	6
2-4 Effect of probiotics on growth performance	9
2-5 Effect of probiotics supplementation on some blood constituents	11
2-5-1 Total protein	11
2-5-2 Albumin and globulin	12
2-5-3 Urea concentration	13
2-5-4 Total lipids	14
2-6 Effect of probiotics supplementation on plasma progesterone profiles and fertility	14
2-7 Effect of probiotics supplementation on milk yield and composition	17
2-7-1 Weight of heifers at puberty	17
2-7-2 Age and weight at first service.	17
2-7-3 Age and weight at fertile service	18
2-8 Relationship between nutrition and onset of puberty	19
2-9 Correlation coefficients between reproductive traits and body measurements	19
III - MATERIALS AND METHODS	21
3-1 Material of study	21
3-2 Experimental animals and rations	21
3-3 Maintenance requirements	24

3-4 Productive requirements	24
3-5 Milk sampling	24
3-6 Blood sampling	25
3-7 Digestibility trials	25
3-8 Body measurements	26
3-9 Methods of analyses	26
3-9-1 Milk analyses	27
3-9-2 Blood plasma analyses	27
3-10 Statistical analysis	28
IV - RESULTS AND DISCUSSION	28
4-1 The first period (from the beginning of experiment to puberty)	28
4-1-1 Feed intake	31
4-1-2 Digestibility	34
4-1- 3 Growth performance and feed efficiency	37
4-1-4 Blood parameters	39
4-2 The second period (from puberty to conception)	39
4-2-1 Feed intake	42
4-2-2 Digestibility	43
4-2-3 Growth performance and feed efficiency	47
4-2-4 Reproductive performance	50
4-2-5 Blood parameters	52
4-3 The third period (lactation)	52
4-3-1 Milk yield	52
4-3-2 Milk composition	53
4-3-3 Milk content yield	53
4-4 Correlation coefficients between reproductive traits and body measurements	53
V - SUMMARY AND CONCLUSION	58

VI – REFERENCES	64
VII – APPENDIX TABLES	85
ARABIC SUMMARY	

LIST OF TABLES

	Page
Table (1): The chemical composition (%) of ration ingredients	23
Table (2): Effect of body weight and Tri-Mic supplementation on feed intake during pre-puberty period in buffaloes	30
Table (3): Effect of body weight and Tri-Mic supplementation on nutrients digestibility (%) during pre-puberty period in buffaloes	33
Table (4): Effect of experimental treatments on growth performance and feed efficiency during pre-puberty period in buffaloes	36
Table (5): Effect of body weight and Tri-Mic supplementation on some blood plasma metabolites during pre-puberty period in buffaloes	38
Table (6): Effect of body weight and Tri-Mic supplementation on feed intake during post –puberty period in buffaloes	41
Table (7): Effect of body weight and Tri-Mic supplementation on nutrient digestibility (%) during post-puberty period in	44
Table (8): Effect of experimental treatments on growth performance and feed efficiency during post-puberty period in buffaloes	46
Table (9): Effect of experimental treatments on reproductive performance in buffaloes	48
Table (10): Effect of body weight and Tri-Mic supplementation on some blood plasma metabolites during post-puberty period in buffaloes	51
Table (11): Effect of experimental treatments on average daily milk yield and milk composition (%) in buffaloes	54
Table (12): Effect of experimental treatments on the yield (kg) of different milk constituents in buffaloes	56
Table (13): Correlation coefficients between reproductive traits and some body measurements in buffaloes	57

LIST OF ABBREVIATIONS

A Albumine

ADF Acid deterbent fiber
ADG Average daily gain
AIA Acid Insoluble Ash

ALT Alanine aminotransferase

AST Aspartate aminotransferase

BCC Body condition score

BW Body weight
C Concentrate
CF Crude fiber
CP Crude protein

d Day

DCP Digestible crude protein

DFM Direct –fed microbial

dl Deciliter

DM Dry matter

DMI Dry matter intake

EE Ether extract

FCM Fat corrected milk

FDA Food and Drug Aministration

Fig Figurre
G Globulin

g Gram

GRAS Generally recognized as safe

H Head

IU International unit

Kg Kilogram

L Liter

MBS Metabolic body size

mg Milligram ml Milliliter

NDF Neutral-detergent fiber

NFE Nitrogen free extract

OM Organic matter

PUN Plasma urea nitrogin

TDN Total digestible nutrients

TDNI Total digestible nutrients intake

TMR Total Mixed ration

US United State

YC Yeast culture

LIST OF APPENDIX TABLES

Contents	Page
Appendix Table (1): Analysis of variance for differences in nutrients intake during pre-puberty period in buffaloes	85
Appendix Table (2): Analysis of variance for differences in nutrients digestibility during pre-puberty period in buffaloes	86
Appendix Table (3): Analysis of variance for differences in nutrients feed efficiency during pre-puberty period in buffaloes	87
Appendix Table (4): Analysis of variance for differences in some blood plasma metabolites during pre-puberty period in buffaloes	88
Appendix Table (5): Analysis of variance for differences in nutrients intake during post-puberty period in buffaloes	89
Appendix Table (6): Analysis of variance for differences in nutrients digestibility during post-puberty period in buffaloes	90
Appendix Table (7): Analysis of variance for differences in nutrients feed efficiency during post-puberty period in buffaloes	91
Appendix Table (8): Analysis of variance for differences in some blood plasma metabolites during post-puberty period in buffaloes	92
Appendix Table (9): Analysis of variance for differences in milk composition during lactation period in buffaloes	93

Table (1): The chemical composition (%) of ration ingredients

•	m DM	On DM basis						**************************************	
Item		Ash	ОМ	CF	СР	EE	NFE	- *TDN%	*DP%
Berseem	16.55	10.61	89.39	26.49	18.2	2.17	42.53	11.97	2
Darawa	18.80	9.29	90.71	38.04	10.70	1.59	40.38	14	2
Rice straw	93.61	21.98	78.02	36.41	3.51	1.70	36.40	40	0
CFM	91.59	8.82	91.18	9.53	15.87	2.81	62.97	63.7	9.8

^{*} According to Abou- Raya (1967).

DM (dry matter), OM (organic matter), CF (crude fiber), CP (crude protein), EE (ether extract), NFE (nitrogen free extract), TDN (total digestible nutrients), DP (digestible protein).